

Toward Agile: An Integrated Analysis of Quantitative and Qualitative Field Data on
Software Development Agility
Author(s): Gwanhoo Lee and Weidong Xia
Source: MIS Quarterly, Vol. 34, No. 1 (March 2010), pp. 87-114
Published by: Management Information Systems Research Center, University of Minnesota
Stable URL: https://www.jstor.org/stable/20721416
Accessed: 03-09-2018 17:03 UTC

REFERENCES
Linked references are available on JSTOR for this article:
https://www.jstor.org/stable/20721416?seq=1&cid=pdf-reference#references_tab_contents
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Management Information Systems Research Center, University of Minnesota is
collaborating with JSTOR to digitize, preserve and extend access to MIS Quarterly

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Quarterly
 Toward Agile: An Integrated Analysis of
 Quantitative and Qualitative Field Data
 on Software Development Agility1

 By: Gwanhoo Lee
 Department of Information Technology
 Kogod School of Business
 American University
 4400 Massachusetts Avenue NW
 Washington, DC 20016-8044
 U.S.A.
 glee@american.edu

 Weidong Xia
 Department of Decision Sciences and

 Information Systems
 College of Business Administration
 Florida International University
 11200 SW 8 Street
 Miami, FL 33199
 Weidong.Xia@fiu.edu

 Abstract

 As business and technology environments change at an unpre
 cedented rate, software development agility to respond to
 changing user requirements has become increasingly critical

 for software development performance. Agile software devel
 opment approaches, which emphasize sense-and-respond,
 self-organization, cross-functional teams, and continuous
 adaptation, have been adopted by an increasing number of
 organizations to improve their software development agility.

 However, the agile development literature is largely anee

 dotal and prescriptive, lacking empirical evidence and theo
 retical foundation to support the principles and practices of
 agile development. Little research has empirically examined
 the software development agility construct in terms of its
 dimensions, determinants, and effects on software develop
 ment performance. As a result, there is a lack of under
 standing about how organizations can effectively implement
 an agile development approach.

 Using an integrated research approach that combines quan
 titative and qualitative data analyses, this research opens the
 black box of agile development by empirically examining the
 relationships among two dimensions of software development
 agility (software team response extensiveness and software
 team response efficiency), two antecedents that can be con
 trolled (team autonomy and team diversity), and three aspects
 of software development performance (on-time completion,
 on-budget completion, and software functionality). OurPLS
 results of survey responses of399 software project managers
 suggest that the relationships among these variables are more
 complex than what has been perceived by the literature. The
 results suggest a tradeoff relationship between response
 extensiveness and response efficiency. These two agility
 dimensions impact software development performance dif
 ferently: response efficiency positively affects all of on-time
 completion, on-budget completion, and software functionality,

 whereas response extensiveness positively affects only soft
 ware functionality. The results also suggest that team auton
 omy has a positive effect on response efficiency and a
 negative effect on response extensiveness, and that team
 diversity has a positive effect on response extensiveness. We
 conducted 10 post hoc case studies to qualitatively cross
 validate our PLS results andprovide rich, additional insights
 regarding the complex, dynamic interplays between auton

 Germar Straub was the accepting senior editor for this paper. Bill Kettinger
 served as the associate editor.

 MIS Quarterly Vol. 34 No. 1, pp. 87-114/March 2010 87

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 omy, diversity, agility, and performance. The qualitative
 analysis also provides explanations for both supported and
 unsupported hypotheses. We discuss these qualitative
 analysis results and conclude with the theoretical and prac
 tical implications of our research findings for agile develop
 ment approaches.

 Keywords: Software development agility, agile software
 development, team autonomy, team diversity, software
 development performance, requirement change, partial least
 square, case study

 Introduction HBHH

 The unprecedented rate of change in business and technology
 has made it increasingly difficult for software teams to
 determine user requirements and respond to their changes
 (Schmidt et al. 2001). A U.S. Department of Defense study
 shows that 45 percent of software features fail to meet user
 needs and requirements (Larman 2004). Agile software
 development approaches such as XP (extreme Programming),
 Scrum, DSDM (Dynamic Systems Development Method),
 and FDD (Feature-Driven Development) have been proposed
 as solutions to improve a software team's ability to embrace
 and respond to changing requirements (Beck and Andres
 2005; Coad et al. 1999; Schwaber and Beedle 2002; Stapleton
 1997). Agile development approaches differ from the tradi
 tional, plan-driven, structured approaches as the former put
 more emphasis on lean processes and dynamic adaptation
 than on detailed front-end plans and heavy documentation
 (Nerur and Balijepally 2007).

 At the heart of agile development approaches is the notion of
 software development agility, which is defined in this
 research as a software team's ability to efficiently and
 effectively respond to user requirement changes. However,
 agility is difficult to achieve in practice (Cockburn 2001). It
 has been reported that only 11 percent of IS organizations
 were able to keep up with business demands and that 76
 percent were not able to effectively cope with changing busi
 ness needs (Koch 2006). This lack of agility often results in
 substantial financial loss (Austin and Devin 2003).

 Despite the growing popularity and importance of agile
 approaches, little research has empirically examined their key
 concepts and underlying theoretical relationships (Baskerville
 2006; Boehm and Turner 2004; Larman 2004). The core
 values, principles, and practices of agile development have
 been derived mainly from past experiences and its effec
 tiveness has been supported largely by anecdotal evidence and
 rhetorical arguments. Furthermore, the concept of software

 development agility has not been well understood. As a
 result, many organizations adopt agile development ap
 proaches without clearly understanding how agility is defined
 and measured and what factors they can control to influence

 it. Highsmith (2000) argues that "techniques without a
 theoretical base are reduced to a series of steps executed by
 rote" (p. 14). Unfortunately, if, how, why, and when agile
 development works or doesn't work remains largely a black
 box. This research aims to fill this literature gap by
 addressing critical questions pertaining to agile development
 approaches. As software development agility is a central
 concept and a core value of agile development (Agile
 Alliance 2001; Larman 2004), we investigate its dimensions,
 determinants, and effects.

 We intend to make the following contributions. First, while
 prior agile development literature has not explicitly distin
 guished different dimensions of software development agility,
 we propose that it is not a monolithic, single dimensional
 construct; rather, it is a multidimensional construct comprised
 of different and even conflicting capabilities. We identify and
 assess two key agility dimensions, namely software team
 response extensiveness and software team response effi
 ciency, which tap into different important aspects of agility.

 Indeed, agile development approaches invariably promote
 extensive responses to requirement changes in a rapid and
 efficient manner (Erickson et al. 2005; Henderson-Sellers and

 Serour 2005; Lyytinen and Rose 2006). Software team
 response extensiveness is defined as the proportion of various
 types of changing user requirements that a software team
 responds to and incorporates into the software system. For
 example, if a software team incorporates 80 out of 100
 different requirement changes, the team's response exten
 siveness would be 80 percent. Greater response extensiveness
 indicates greater software development agility. On the other
 hand, software team response efficiency is defined as the
 minimal time, cost, personnel, and resources that the team
 requires to respond to and incorporate a particular require
 ment change. Software development is considered agile when
 the team requires relatively little time, cost, personnel, and
 resources to respond to a requirement change. An important
 question that this research addresses is: How are these two
 dimensions of software development agility related to each
 other?

 Second, we examine how team autonomy and team diversity,

 two team-level variables organizations can control in staffing

 and managing projects, affect software development agility.
 In this research, team autonomy refers to the extent to which
 the software team is empowered with the authority and con
 trol in making decisions to carry out the project. Team diver
 sity refers to the extent to which team members are different

 88 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 in terms of their functional backgrounds, skills, expertise, and

 work experience. Agile development views team autonomy
 and team diversity as important principles and practices that
 foster software development agility (Larman 2004). For
 example, agile development advocates self-organizing, self
 directed, and self-disciplined teams (Highsmith 2004; Larman
 2004). Furthermore, agile development posits that a software
 team should have a variety of skills and perspectives,
 necessary for sensing problems and pitfalls, thinking of
 multiple ways to solve problems, and implementing solutions
 (Beck and Andres 2005). To our knowledge, no research has
 empirically validated how team autonomy and team diversity
 influence software development agility.

 Third, this research examines how the two dimensions of
 software development agility affect software development
 performance in terms of on-time completion, on-budget
 completion, and software functionality. The positive effect of
 software development agility on performance has been
 supported in the literature mainly by anecdotal evidence and
 rhetorical arguments. Thus, rigorous empirical investigation
 is required to answer the question of if and how software
 development agility affects development performance.

 To address these emergent, complex issues associated with
 software development agility, we use an integrated multi

 method approach that combines quantitative and qualitative
 methods. This integrated approach intends to formulate
 research questions and develop measurement instruments
 grounded in field data, provide both statistical evidence and
 rich explanations, triangulate results, and discover novel
 insights that stimulate further research (Kaplan and Duchon
 1988; Lee 1991; Mingers 2001). Our research starts with
 preliminary qualitative field studies and focus groups that
 help formulate research problems and questions, identify key
 constructs, and develop measures for new constructs. We
 then conduct a PLS analysis of the data from a large-scale
 quantitative survey to validate measurement and test hypoth
 eses. Finally, we conduct multiple mini-case studies to cross
 validate the PLS results, provide rich, additional insights, and
 offer explanations for both supported and unsupported
 hypotheses.

 Theoretical Background

 Agile Software Development Approaches

 Agile software development approaches have evolved since
 the mid-1990s as new alternative solutions to the inability of
 traditional "heavyweight" methods to address such enduring
 problems as time/cost overruns and the lack of responsiveness

 to changing requirements (Beck and Andres 2005 ; Boehm and
 Turner 2004; Cockburn 2001; Highsmith 2004; Larman
 2004). Agile development views the software development
 process to be dynamic, evolving, and organic, rather than
 static, predefined, and mechanistic (Beck and Andres 2005;
 Highsmith 2000). Commonly used agile development
 methods include XP (extreme Programming), Scrum, DSDM
 (Dynamic Systems Development Method), and FDD (Feature
 Drive Development). In 2001, the 4 core values and 12
 principles of agile development were formally introduced and
 endorsed in the publication of the Agile Manifesto by some of
 the prominent members of the agile development community.
 Since then, agile development has attracted much interest
 from the software industry (Dyb? and Dingsoyr 2008).

 According to the Agile Manifesto, agile development values
 individuals and interactions over processes and tools, working
 software over comprehensive documentation, customer col
 laboration over contract negotiation, and responding to
 change over following a plan (Agile Alliance 2001). It
 employs "light and barely sufficient" methods to minimize
 time-consuming and costly software processes such as
 detailed front-end planning and heavy documentation (Boehm
 and Turner 2004; Fitzgerald et al. 2006). Agile development
 attempts to effectively manage volatile and changing user
 requirements through a variety of practices and techniques
 (Beck and Andres 2005). It promotes frequent and con
 tinuous delivery of working software, embracing changing
 requirements, close collaboration between developers and
 users, self-organizing and empowered teams, face-to-face
 communication, technical excellence, simplicity, and con
 tinuous adaptation (Agile Alliance 2001). Embracing and
 responding to changing user requirements is at the heart of
 agile development.

 Although many benefits of agile development have been
 speculated and claimed, and increasingly more organizations
 are adopting the approach, there have been few empirical field
 studies that have rigorously examined if, how, and why agile
 development is effective (Fr?hling and De Vreede 2006; Moe
 et al. 2008). As a result, agile development lacks theoretical
 underpinnings and scientific evidence that support its claimed
 benefits and key principles (Erickson et al. 2005). To fill this
 gap, researchers have called for structured, rigorous empirical
 studies on agile development with a common research agenda
 (Dyb? and Dingsoyr 2008).

 Software Development Agility,
 Autonomy, and Diversity

 We review the prior agile development literature relevant to
 our main research constructs: software development agility,

 MIS Quarterly Vol. 34 No. 1/March 2010 89

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 team autonomy, and team diversity. Table 1 summarizes the
 definitions and descriptions pertaining to the constructs and
 Table 2 summarizes the key principles and practices under
 lying the Agile Manifesto and four commonly used agile

 methods that emphasize software development agility, team
 autonomy, and team diversity (Beck and Andres 2005;
 Cockburn 2001; Highsmith 2004; Larman 2004).

 As shown in Table 1, prior literature provides various defini
 tions and descriptions of software development agility. While
 the literature is vague about the underlying dimensions and

 measures of software development agility, there is a common
 theme underlying the various definitions and descriptions in
 that agility is generally defined in terms of embracing and
 responding to change (Conboy and Fitzgerald 2004; Erickson
 et al. 2005; Henderson-Sellers and Serour 2005; Highsmith
 2004; Larman 2004; Qumer and Henderson-Sellers 2008).
 Similarly, we define software development agility in this
 research as the software team's capability to efficiently and
 effectively respond to and incorporate user requirement
 changes during the project life cycle.

 Furthermore, it appears that prior literature tends to view
 software development agility as consisting of two important
 elements that correspond to our conceptualization of the two
 agility dimensions: response extensiveness and response
 efficiency. Response extensiveness relates to the extent,
 range, scope, or variety of software team responses. In con
 trast, response efficiency relates to the time, cost, resources,
 or effort associated with software team responses. As sum
 marized in Table 1, agile development promotes both
 response extensiveness in terms of embracing various changes
 (Henderson-Sellers and Serour 2005; Qumer and Henderson
 Sellers 2008) and response efficiency in terms of doing so
 with high speed and low cost (Conboy and Fitzgerald 2004;
 Erickson et al. 2005; Larman 2004; Qumer and Henderson
 Sellers 2008). As shown in Table 2, software development
 agility is at the heart of agile development principles and
 practices. Agile development approaches promote agility
 through short, incremental, iterative, time-boxed development
 cycles, self-organizing teams, active participation of stake
 holders, and continuous delivery of working software.

 Team autonomy and team diversity have been invariably
 viewed by prior literature as important principles for im
 proving software development agility, as shown in Tables 1
 and 2. Agile development is fundamentally people-centric
 and recognizes the value of team members' competencies in
 bringing agility to development processes (Nerur and Balije
 pally 2007). It has been argued that getting the right people
 with appropriate skills and empowering them in decision
 making are critical for agile development success (Chow and
 Cao 2008; Cockburn 2007; Highsmith 2004).

 Team autonomy refers to the degree of discretion and inde
 pendence granted to the team in scheduling the work, deter
 mining the procedures and methods to be used, selecting and
 deploying resources, hiring and firing team members,
 assigning tasks to team members, and carrying out assigned
 tasks (Breaugh 1985). It decentralizes decision-making
 power to those who will actually carry out the work (Tati
 konda and Rosenthal 2000). As shown in Tables 1 and 2,
 agile development emphasizes the importance of autonomous,
 self-organizing, self-directed, self-disciplined software teams
 for achieving software development agility (Highsmith 2004;
 Nerur and Balijepally 2007; Sharp and Robinson 2004).
 Autonomous teams have considerable leeway in how they
 deliver results (Highsmith 2004). Autonomy brings decision
 making authority to the hands of the people who face and
 handle problems every day, thus, it increases the speed and
 effectiveness of problem solving (Larman 2004; Tata and
 Prasad 2004). While team autonomy is one of the key
 principles in agile development, little empirical research has
 tested its effect on software development agility.

 Team diversity is defined as the heterogeneity within the team
 in terms of individual attributes, such as age, gender, ethnic
 background, education, functional background, tenure, and
 technical abilities (Williams and O'Reilly 1998). As shown
 in Tables 1 and 2, agile development proposes that diverse
 software teams are more effective than homogeneous teams
 in sensing and responding to various environmental changes
 (Cockburn 2007; MacCormack et al. 2001). Drawing upon
 Ashby's law of requisite variety (Ashby 1956), the agile
 literature suggests that a software team's internal variety
 should match the variety and complexity of the environment

 and that the diversity of skills amplify the internal variety that
 enables the team to respond to the changing environment
 (Highsmith 2004; Nerur and Balijepally 2007). Although
 conflict is the inevitable companion of diversity, agile devel
 opment suggests that software teams need to bring together a
 variety of skills and perspectives to see problems and pitfalls,
 to think of multiple ways to solve problems, and to implement

 the solutions (Coad et al. 1999). However, little empirical
 research has tested if and how team diversity affects software

 development agility.

 Research Model and Hypotheses

 Our research model is shown in Figure 1. The central con
 structs of the research model are software team response
 extensiveness and software team response efficiency that tap
 into two different, important dimensions of software develop

 ment agility. Hypotheses 1 through 4 posit that software team
 autonomy and software team diversity have differential ef

 90 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Table 1. Agile Development Literature on Agility, Autonomy and Diversity
 Construct Literature Relevant Definitions/Concepts/Ideas

 Conboy & Fitzgerald
 (2004)

 Agility is defined as the continual readiness of an entity to rapidly or inherently, pro

 actively or reactively, embrace change, through high-quality, simplistic, economical
 components and relationships with its environment

 Highsmith (2004) Agility is the ability to both create and respond to change in order to profit in a

 turbulent business environment; it is the ability to balance flexibility and stability

 Larman (2004) Agility is rapid and flexible response to change

 Erickson et al. (2005)

 Software
 development

 agility

 Agility is associated with such related concepts as nimbleness, suppleness,
 quickness, dexterity, liveliness, or alertness; it means to strip away the heaviness in
 traditional software development methodologies to promote quick response to
 changing environments and changes in user requirements

 Henderson-Seller &

 Serour (2005)
 Agility refers to readiness for action or change; it has two dimensions: (1) the
 ability to adapt to various changes and (2) the ability to fine-tune and reengineer
 software development processes when needed

 Lyytinen & Rose (2006) Agility is defined as the ability to sense and respond swiftly to technical changes
 and new business opportunities; it is enacted by exploration-based learning and
 exploitation-based learning

 Cockburn (2007) Agility is being light, barely sufficient, and maneuverable

 Qumer & Henderson
 Sellers (2008)

 Agility is a persistent behavior or ability of an entity that exhibits flexibility to accom

 modate expected or unexpected changes rapidly, follows the shortest time span,
 and uses economical, simple, and quality instruments in a dynamic environment;
 agility can be evaluated by flexibility, speed, leanness, learning, and
 responsiveness

 Cockburn & Highsmith
 (2001)

 Agile teams are characterized by self-organization

 Highsmith (2002) Software teams should enable team decision-making

 Highsmith (2004) The agile development supports self-organization, self-discipline, and self
 management

 Larman (2004)
 Team

 autonomy

 In Scrum, the team is empowered with the authority and resources to find their own

 way and solve their own problems

 Sharp & Robinson
 (2004)

 Self-managing, self-organizing teams are essential for agile development culture,
 especially for XP

 Beck & Andres (2005) One of the XP principles is team responsibility and authority

 Nerur & Balijepally
 (2007)

 Self-organizing teams are key for responsiveness and flexibility

 Chow & Cao (2008) Self-organizing teamwork is found to increase system quality

 Kelley (2008) Empowerment is key for agile development
 MacCormack et al.

 (2001)
 Teams with greater amounts of broad experience are positively associated with
 project performance

 Highsmith (2004) Getting the right people with appropriate skills is critical
 Team

 diversity
 Beck & Andres (2005) One of the XP principles is team diversity, which is enacted by the notion of "whole

 team"

 Cockburn (2007) Team diversity is desirable; heterogeneous teams outperform homogeneous teams

 Nerur & Balijepally
 (2007)

 Team diversity is key for agile development

 MIS Quarterly Vol. 34 No. 1/March 2010 91

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Table 2. Key Principles and Practices of Agile Approaches/Methods

 Agile Approach/
 Method

 Principles/Practices Emphasizing
 Software Development Agility

 Principles/Practices Emphasizing
 Team Autonomy and Diversity

 Agile
 Alliance

 Manifesto
 (Agile Alliance

 2001)

 Welcome changing requirements, even late
 in development

 Agile processes promote sustainable
 development
 Deliver working software frequently
 Continuous attention to technical excellence

 enhances agility

 The best architectures, requirements, and designs
 emerge from self-organizing teams
 Build projects around motivated individuals; give
 them the environment and support they need, and
 trust them to get the job done
 Teams reflect on how to become more effective

 and adjust their behavior
 Business people and developers must work
 together daily

 Scrum
 (Schwaber and
 Beedle 2002)

 Software team determines features of each

 sprint from an evolving product backlog
 Create an increment of potentially shippable
 software during each sprint

 Teams determine how much of the features in the

 product backlog they want to commit to during the
 next sprint
 Self-organizing, cross-functional teams across
 different phases/sprints

 XP
 (Beck and

 Andres 2005)

 The highest priority is continuously satisfy
 changing customer needs
 Rapid user review and feedback

 Align team authority/control with responsibility to
 get things done
 Pair programming: two developers complement
 each other's skills and work

 DSDM
 (Stapleton 1997)

 Development is iterative, incremental, and
 driven by user feedback
 Delivering a perfect system is less important
 than delivering a system that addresses the
 current business needs

 Teams must be empowered to make project deci
 sions without waiting for higher-level approval
 Continuous interactions and cooperation among all
 project stakeholders

 FDD
 (Coad et al.

 1999)

 Customer/feature-centered iterative cycles
 Regular build and inspection to ensure up-to
 date systems

 Small, dynamically formed, autonomous teams are
 effective

 Multiple cross-functional minds are always applied
 to each design decision

 Software Team
 Characteristics

 Software Team
 Autonomy

 Software Team
 Diversity

 H1a(+)
 H1b(-)

 H2(+)

 H3(+)

 H4(-)

 Software Development
 Agility

 Software Team
 Response Extensiveness

 H5B
 Software Team

 Response Efficiency

 Software Development
 Performance

 On-Time Completion

 On-Budget Completion

 Software Functionality

 Figure 1. The Research Model

 92 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 fects on software team response extensiveness and response
 efficiency. Hypothesis 5 posits a tradeoff relationship be
 tween software team response extensiveness and response
 efficiency. Finally, hypotheses 6 and 7 posit that software
 team response extensiveness and response efficiency have
 differential effects on three dimensions of software develop
 ment performance: on-time completion, on-budget comple
 tion, and software functionality.

 Effects of Team Autonomy on Software
 Development Agility

 We propose two competing hypotheses for the effect of team
 autonomy on software team response extensiveness. On the
 one hand, autonomy facilitates creativity in solving problems
 and enhances team learning in uncertain environments (Imai
 et al. 1985). Self-organization and local control allow teams
 to be open to innovative ideas (Lyytinen and Rose 2006).
 Decentralized decision making enables autonomous teams to
 be effective in sensing and responding to environmental
 changes (McGrath 2001). To be adaptive and agile, a soft
 ware team must be willing and able to take risks, and experi
 ment through trial-and-error iterations. A higher degree of
 team autonomy is likely to lead to greater risk taking and
 experimentation (Tushman and O'Reilly 1996). An auton
 omous team is likely to freely experiment and search for
 solutions to a broad range of user requirement changes.
 Therefore, we propose

 Hypothesis la. Software team autonomy positively
 affects the extensiveness of the team's response to
 user requirement change.

 On the other hand, team autonomy may reduce the exten
 siveness of software team response. Software development
 typically requires software teams to make tradeoff decisions
 among the interdependent and conflicting goals of time, cost,
 and scope. If a team has a high level of autonomy, it has
 more latitude to say "no" to users' change requests, in order
 to meet time and cost goals. As a result, the team can be more
 selective in responding to changing requirements. In contrast,
 if a team has little autonomy, it may end up being an order
 taker and responding to every change request. In our pre
 liminary field interviews, we found that highly autonomous
 teams were often selective in dealing with requirement change

 requests. Therefore, we propose the following competing
 hypothesis:

 Hypothesis lb. Software team autonomy negatively
 affects the extensiveness of the team's response to
 user requirement change.

 Increased autonomy enables a software team to make and
 execute decisions at a higher speed with lower cost, because
 the team does not need to go through the bureaucratic
 organizational hierarchy, which is time-consuming and costly
 (Clark and Fujimoto 1991). An empowered, self-organized,
 autonomous team can sense and respond to requirement
 changes efficiently through direct and close interactions with

 users without waiting for managerial approval. As a result,
 increased autonomy allows the software team to reduce the
 time, cost, and resources required to sense requirement
 change needs and to make necessary changes to the system.
 Therefore, we propose

 Hypothesis 2. Software team autonomy positively
 affects the efficiency of the team 's response to user
 requirement change.

 Effects of Team Diversity on Software
 Development Agility

 Diversity can be a double-edged sword, improving group
 performance in certain tasks but, often, disrupting group
 processes (Milliken and Martins 1996; Pelled et al. 1999).
 Responding to a changing requirement is essentially a
 problem-solving process because a requirement change
 reflects a complex business and/or technical problem. To be
 agile, a software team should be able to develop effective
 solutions to various complex problems. According to the
 cognitive resource perspective, qualities such as a variety of
 expertise, experiences, backgrounds, and perspectives brought
 by diverse members increase the team's cognitive resources
 and ability to engage in complex problems (Aladwani 2002;

 Watson et al. 1993). Team members with diverse compe
 tencies and perspectives stimulate learning and innovation,
 and generate more alternative solutions for complex problems
 (Campion et al. 1993; Watson et al. 1993).

 Furthermore, team members with diverse expertise and
 experiences can access diverse social networks and profes
 sional communities in their domains of expertise (Ancona and
 Caldwell 1992). The access to large external networks and
 communities can facilitate acquisition and development of
 new knowledge and skills that are necessary to respond to
 requirement changes. Diverse functional backgrounds help
 the software team understand the contexts of various change
 needs. Therefore, we expect a diverse team to be more
 capable of handling a wide range of requirement changes.

 Hypothesis 3. Software team diversity positively
 affects the extensiveness of the team 's response to
 user requirement change.

 MIS Quarterly Vol. 34 No. 1/March 2010 93

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 However, team diversity may negatively affect the efficiency
 of team response process. Social identity theory and self
 categorization theory (Turner et al. 1987) suggest that, due to
 intergroup categorizations and different identities among

 workgroup members, diversity decreases team cohesion and
 integration (Webber and Donahue 2001), causes communi
 cation failures (Miller et al. 1998), and increases task-related
 conflict (Pelled et al. 1999). Diversity makes it difficult for
 team members to develop a shared mental model due to
 knowledge gaps within the team (Klimoski and Mohammed
 1994; Mathieu et al. 2000). As a result, a diverse software
 team is likely to incur more time, cost, and efforts in com

 municating and coordinating tasks and making decisions to
 sense and understand change requests, to develop response
 strategies, and to implement appropriate responses. There
 fore, we propose

 Hypothesis 4. Software team diversity negatively
 affects the efficiency of the team 's response to user

 requirement change.

 Relationship Between Response Extensiveness
 and Response Efficiency

 We propose that team response extensiveness negatively
 affects team response efficiency. Considering the impacts of
 requirement changes on time/cost/scope goals that are
 inherently conflicting, software teams tend to first choose how

 much they would respond to changes. This choice in turn
 affects response efficiency. One of the common practices
 underlying many agile development approaches is time
 boxing by which the software team balances its conflicting
 needs for embracing as many user requirement changes as
 possible and meeting time and cost goals at the same time
 (Larman 2004). For example, with Scrum, software teams
 first decide on the scope of the requirement changes in the
 user backlog that they need to address in the next sprint, and
 then implement them as efficiently as possible to meet project
 goals (Schwaber and Beedle 2002). Similarly, XP's weekly
 and quarterly development cycles enforce the same pattern;
 the customers first choose the scope of work for the next

 development cycle and then the software team implements it
 as efficiently as possible to meet the project goals (Beck and
 Andres 2005). Therefore, the agile approaches suggest that
 the choice of response extensiveness tends to precede
 response efficiency.

 Furthermore, we argue that the more extensively the team
 responds to changes, the less efficient the team is in imple
 menting each change. When a software team attempts to
 address a wide variety of requirement changes, the team is

 likely to respond not only to familiar or anticipated changes
 but also to unfamiliar or unanticipated changes. As a result,
 the team often needs to develop or acquire new knowledge
 and capabilities through search, experimentation, innovation,
 and variation. This process consumes a substantial amount of
 time, cost, and resources and reduces the team's attention to

 speed or cost, thus decreasing response efficiency (Lyytinen
 and Rose 2006). In one of our preliminary field interviews,
 we found that a software team tried to incorporate all user
 change requests, some of which related to issues with which
 the team was not familiar. As a result, the team was over

 whelmed with the variety and amount of change requests and
 could not address any of the changes efficiently.

 In contrast, narrow, selective, and controlled team responses

 to requirement changes would lead to higher response
 efficiency. When a software team selectively responds to
 certain types of user requirement changes, the team can refine,

 optimize, and streamline its response process through
 repeated implementations. As a result, the team is likely to
 reduce coordination and implementation costs for handling
 requirement changes, thus increasing response efficiency.
 Therefore, we propose

 Hypothesis 5. Software team response extensiveness
 negatively affects software team response efficiency.

 Effects of Software Development Agility on
 Software Project Performance

 Both the traditional software development literature and the
 agile literature suggest that on-time completion, on-budget
 completion, and software functionality are important dimen
 sions of software development performance (Highsmith 2004;
 Kerzner 2005; Mitchell 2006; Nidumolu 1995). On-time
 completion and on-budget completion refer to the extent to
 which a software project meets its baseline goals for duration
 and cost. Software functionality refers to the extent to which
 the delivered software system meets its functional goals, user

 needs, and technical requirements (Weitzel and Graen 1989).
 There are inherent tradeoffs among time, cost, and func
 tionality because pursuing one often comes at the expense of
 the others (Nidumolu 1995).

 We posit that extensive responses cause time and cost over
 runs. To extensively respond to many different requirement
 changes, software teams may need to acquire new resources
 and capabilities or reconfigure existing resources, processes,
 and capabilities, requiring substantial organizational learning
 and knowledge transfer. This requires a substantial amount
 of additional time, cost, and resources. On the other hand, we

 94 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 posit that extensive software team responses positively affect
 software functionality. For example, a software team's
 responsiveness to user requests has been found to improve the
 correctness of system configuration (Gefen and Ridings
 2002). Organizations often experience important business
 changes during software development that, in turn, require
 changes in user requirements. The functionality of the soft
 ware system would not satisfy up-to-date user needs if the
 team fails to embrace important changes. Therefore, we
 propose

 Hypothesis 6a. Software team response extensive
 ness negatively influences on-time completion of
 software development.

 Hypothesis 6b. Software team response extensive
 ness negatively influences on-budget completion of
 software development.

 Hypothesis 6c. Software team response extensive
 ness positively influences software functionality.2

 Managing requirement changes accounts for an increasing
 portion of software development duration and cost in today's
 turbulent business environment. If the efficiency of team
 response is high, the amount of additional time and costs
 necessary for handling requirement changes is minimal. That,
 in turn, would help reduce time and cost overruns and meet
 the initial time and budget goals. Furthermore, we propose
 that efficient team responses improve the functionality of the
 delivered software system. As the software team repeatedly
 implements responses to similar types of requirement
 changes, not only does the team increase efficiency of their
 response process but also streamlines, optimizes, and perfects
 their work. In contrast, inefficient team responses are more

 likely to cause problems and errors in the work process. All
 else being equal, efficient team responses are expected to
 result in high quality software functionality that effectively
 satisfies user requirements. Therefore, we propose

 Hypothesis 7a. Software team response efficiency
 positively influences on-time completion of software
 development?

 Hypothesis 7b. Software team response efficiency
 positively influences on-budget completion of soft
 ware development.A

 Hypothesis 7c. Software team response efficiency
 positively influences software functionality.

 Research Methods ^ ^ H

 Research Process and Study Sample

 The detailed description of our research process is provided
 in Appendix A. In summary, we used an integrated multi
 method approach that includes both quantitative and quali
 tative data analyses, consisting of five phases: (1) preliminary
 field interviews, (2) survey data collection, (3) measurement
 validation, (4) hypothesis testing, and (5) post hoc case
 studies. Quantitative data were collected and analyzed in
 Phases 2,3 and 4, whereas qualitative data were collected and
 analyzed in Phases 1 and 5. The integration of quantitative
 and qualitative approaches helps address limitations of each
 approach by providing both statistical objectivity and a deeper
 understanding of contexts (Kaplan and Duchon 1988; Lee
 1991; Trauth and Jessup 2000).

 Preliminary field interviews, focus groups, sorting procedure,
 and pilot tests were used in Phase 1 to formulate research
 problems and questions, identify key constructs, and generate
 and refine measurement items. The survey respondents in
 Phase 2 were members of the Information Systems Specific
 Interest Group of the Project Management Institute (PMI
 ISSIG). The target respondents were 1,740 North American
 members who were project managers and had recently
 managed a software development project. After measures
 were validated in Phase 3, the PLS analysis of 399 survey
 responses in Phase 4 provided statistical evidence for the
 hypothesized relationships among the constructs. In Phase 5,
 post hoc case studies were conducted to validate the PLS
 results, provide richer explanations and insights for the
 results, and reveal the complex dynamics of tensions among
 the constructs. We selected the cases that demonstrated

 diverse project profiles in terms of system type, project size,
 development methods, and project performance as well as
 different patterns of team autonomy, diversity, response
 extensiveness, and response efficiency. We identified and
 solicited 25 target projects from the survey sample and 10
 projects agreed to participate in our post hoc case studies.

 4Similarly, software team response efficiency and on-budget completion are
 conceptually distinct constructs.

 2
 Software team response extensiveness and software functionality are

 conceptually distinct constructs in that the former only concerns the extent
 of team responses to requirement changes that arise during the project
 whereas the latter concerns meeting the entire requirements including both
 the original and changed requirements.

 3 Software team response efficiency and on-time completion are conceptually
 distinct constructs in that the former only concerns the efficiency of team
 responses to requirement changes that arise during the project whereas the
 latter concerns on-time completion of the entire project.

 MIS Quarterly Vol. 34 No. 1/March 2010 95

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Measures

 The final items for measuring the constructs are shown in
 Appendix B. We developed new measures for the two agility
 dimensions as they are newly proposed with no existing
 measures in the literature. Software team response exten
 siveness was measured by how much a software team incor
 porates changing requirements in system scope, input data,
 output data, business rules/processes, data structure, and user

 interfaces. Software team response efficiency was measured
 by the relative level of time, cost, personnel, and resources
 needed by the software team to respond to and incorporate a
 given requirement change. Software team response efficiency

 is considered higher when a team needed less effort to
 incorporate a given requirement change and vice versa. In the

 original scale of the measures, a higher number indicates
 more effort and thus lower response efficiency. For intuitive

 interpretation of results, we reversed the scale in data analysis

 so that a higher number indicates higher response efficiency.

 Software team autonomy was measured by four items that
 were adapted from prior literature (Breaugh 1985; Janz et al.
 1997; Zmud 1982). These items tapped into the extent to

 which the software team had discretion, freedom, and inde

 pendence in making project-related decisions, such as
 choosing tools/technologies, setting goals, handling user
 requirement changes, and assigning personnel to the team.
 Software team diversity was measured by four items adapted
 from prior literature (Campion et al. 1993). These items
 tapped into diversity and heterogeneity of team members'
 expertise areas, skills, prior work experiences, and functional

 backgrounds.

 Software development performance was measured by three
 dimensions: on-time completion, on-budget completion, and
 software functionality. Based on the objective data of project
 start date, planned completion date, and actual completion
 date, we computed time overrun rate using the ratio of time
 overrun (i.e., actual completion date minus planned com
 pletion date) to planned duration (i.e., planned completion
 date minus project start date). Greater time overrun rate
 indicated lower on-time completion performance. Similarly,

 we obtained planned project cost and actual project cost and
 computed cost overrun rate using the ratio of cost overrun
 (i.e., actual project cost minus planned project cost) to
 planned project cost. Greater cost overrun rate indicated
 lower on-budget completion performance. In addition to
 these objective measures, we measured perceived on-time
 completion and perceived on-budget completion for cross
 validation (Deephouse et al. 1996; Nidumolu 1995). Software
 functionality was measured by four items adapted from prior

 literature (Nidumolu 1995; Weitzel and Graen 1989). These
 items measured the extent to which the final software system

 achieved functional goals, met user requirements, satisfied
 user needs, and met technical requirements.

 Results ^^HH^H^^^^^^^H

 Characteristics of the Survey Sample

 We received survey responses from the managers of 565
 different projects. After eliminating 60 invalid responses, we

 retained 505 usable responses for data analysis, resulting in an
 effective response rate of 29.0 percent. As shown in Table 3,

 the sample represented a wide range of industry sectors and
 included small, medium, and large organizations with $2.5
 billion annual sales and 14,786 employees on average. The
 sample was also representative of small, medium, and large
 software development projects. On average, the sample pro
 jects had a budget of $2 million, 34 team members, and dura

 tion of 12 months. All respondents were project managers of
 software development projects with their affiliations and
 functional backgrounds including internal IT managers,
 internal business managers, and external IT consultants.

 To examine the possibility of nonresponse bias, we split the
 sample into two half-sized subgroups based on the time when

 each response was received (Bailey 1987; Sivo et al. 2006).
 We then compared the early response group with the late
 response group on demographic and project variables such as

 project duration, team size, project type, industry, organi
 zational size, and PMP (Project Management Professional)
 certification. No significant differences between the two
 groups on these variables were found, indicating that non
 response bias was not likely to be an issue.

 To assess whether or not potential common method bias was
 a significant issue (Malhotra et al. 2006), we performed two
 different statistical analyses. First, we tested the consistency

 between objective measures and perception-based Likert-scale
 measures of two variables: on-time completion and on-budget
 project completion. We found high correlations between the
 objective measures and the perception-based measures (r =
 .715 for on-time completion, r = .762 for on-budget comple
 tion). Second, we conducted a Harman's one-factor test
 (Podsakoff and Organ 1986) on all of the latent constructs.
 Results showed that multiple factors are present and the most
 covariance explained by one factor is only 25.2 percent,
 indicating that common method biases are not likely to be a
 serious concern (Podsakoff and Organ 1986).

 96 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Table 3. Characteristics of the Survey Sample

 Organizations
 Industry category

 Consulting
 Finance/Insurance

 Government

 Healthcare

 Manufacturing
 Retail
 Software
 Telecom/Network

 Transportation

 Utility
 Other

 Sales
 Less than $100 million

 $100 million - $1 billion

 Over $1 billion

 Number of Employees

 Less than 1,000

 1,000-10,000
 Over 10,000

 Lee & Xia/Software Development Agility

 Software Projects
 Number of project members

 Less than 10
 10-50
 Over 50

 Project budget

 Less than $100,000
 $100,000 -$1 million

 Over$1 million

 Project duration
 Less than 6 months

 6-12 months
 Over 12 months

 Respondents
 Affiliation/Background

 Internal IT manager

 Internal business manager
 External IT consultant

 Measurement Validation

 We modeled the indicators of team autonomy, team diversity,

 on-time completion, on-budget completion, and software
 functionality as reflective measures. However, we modeled
 the indicators of response extensiveness and response
 efficiency as formative measures since these indicators are not
 expected to have covariation within the same latent construct
 and they are causes of, rather than caused by, their latent
 construct (Petter et al. 2007). Reflective indicators and
 formative indicators require different approaches and criteria
 for validating reliability, convergent validity, and discriminant

 validity (Gefen et al. 2000; Petter et al. 2007). Our validation
 results suggest that all reflective measures demonstrated
 satisfactory reliability and construct validity and all formative

 measures demonstrated satisfactory construct validity and no

 significant multicollinearity. Therefore, all of the measures
 were valid and reliable. Detailed procedures and results of
 measurement validation are presented in Appendix C.

 Test of the Structural Model

 The final sample size for the analysis of the proposed struc
 tural model was 399 after excluding 106 responses with

 missing objective data for project duration and budget. We
 conducted t-tests to compare these 399 projects with the 106
 projects excluded on variables such as firm annual sales, firm
 employee size, project team size, project type, and project
 manager's project management experience. No significant
 differences between the two groups on these variables were
 found.

 Our PLS results are shown in Figure 2. Team autonomy has
 a significant negative effect (-.272, < .01) on response
 extensiveness and a significant positive effect (.247, < .01)
 on response efficiency, supporting lb and H2. Team diver
 sity has a significant positive effect (.261, < .01) on
 response extensiveness, supporting H3. However, team diver
 sity does not show a significant effect on response efficiency,

 MIS Quarterly Vol. 34 No. 1/March 2010 97

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Figure 2. PLS Results

 not supporting H4. Response extensiveness has a significant
 negative effect (-.397, < .01) on response efficiency, thus
 supporting H5. Response extensiveness has a significant
 positive affect (.396, < .01) on software functionality, sup
 porting H6c. However, it has no significant effects on either
 on-time completion or on-budget completion, not supporting
 H6a or H6b. Response efficiency demonstrates significant
 positive effects on on-time completion (.362, < .01), on
 budget completion (.325, < .01), and software functionality
 (.298, < .01), supporting H7a, H7b, and H7c.

 Response extensiveness and response efficiency collectively
 explain 13.4 percent of the variance in on-time completion,
 11.0 percent in on-budget completion, and 13.7 percent in
 software functionality. In summary, the results provide
 support for Hypotheses lb, 2, 3, 5, 6c, 7a, 7b, and 7c but no
 support for Hypotheses la, 4,6a, or 6b. In addition, we tested
 a modified second-order PLS model to examine the effects of

 response extensiveness and response efficiency on overall
 software development performance by combining all three
 performance measures. We found that both response exten
 siveness and response efficiency have a significant positive
 effect on the overall development performance. Detailed
 results are reported in Appendix D.

 Although the PLS results support the majority of our
 hypotheses and reveal interesting findings, more in-depth
 investigation of individual cases is deemed necessary to
 explore plausible explanations for unsupported hypotheses,
 cross-validate supported hypotheses, and provide rich insights

 for the complex, dynamic relationships among the constructs
 above and beyond their path coefficients. We discuss below
 the 10 case studies that we conducted.

 Results of Post Hoc Case Studies

 As shown in Table 4, these cases represent diverse software
 development profiles in terms of types of system develop
 ment, industry sectors, and project size. The cases showed
 various combinations of different degrees of autonomy,
 diversity, response extensiveness, response efficiency, and
 project performance. Most cases used a combination of agile
 development approaches and traditional waterfall approaches,
 whereas Case A used an agile development approach alone,
 Case F used a vendor proprietary evolutionary/iterative
 approach, and Case H used the waterfall approach.5 We
 interviewed the project manager for each project and, when
 possible, the project manager identified one or two team
 members for further interviews. In total, we conducted 17
 interviews for the 10 cases. Table 5 shows a summary of key
 findings.

 5To ensure variability in software development agility among the cases, we
 selected projects with varying levels of agile methods, ranging from a pure
 agile approach, to hybrid approaches, to a waterfall approach.

 98 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Table 4. Case Description

 Case Project Objective

 Duration
 Cost

 Team size
 Development
 Methodology

 Autonomy/Diversity/
 Response Extent/

 Response Efficiency
 (High/Medium/Low) Project Performance Interview

 Off-the-shelf software imple
 mentation for core business

 processes and business intelli
 gence in a dairy foods company

 17 months
 $30M
 65 people

 Agile H/H/M/H 1 month overrun; $1.2M cost

 overrun; 95% of system
 functionality goals met

 project
 manager

 ln-house development of manu
 facturing and financial applica

 tions in a manufacturing
 company

 24 months
 $16M
 100 people

 Agile +
 Waterfall

 M/M/L/M Cancelled after 18 months
 with $9M cost-overrun and 5
 month time-overrun

 project
 manager

 Off-the-shelf software

 implementation in a retail

 company

 12 months

 $20M
 45 people

 Agile +
 Waterfall

 M/H/H/M 3 months overrun; $1.5M

 cost overrun; 75% system
 functionality goals met

 project
 manager

 Major application revision and
 maintenance in an airline

 company

 12 months

 $1.3M
 50 people

 Agile +
 Waterfall

 M/M/M/H 4 month time ahead of

 schedule; $100K cost
 overrun; 100% system
 functionality goals met

 project
 manager

 ln-house application
 development in a transportation
 company

 8 months
 $1.5M
 100 people

 Agile +
 Waterfall

 H/M/M/H 3 month time overrun;

 $150K cost overrun; 95%
 system functionality goals
 met

 project
 manager

 ERP implementation
 (finance/accounting module) for
 a federal agency

 12 months
 $30M
 160 people

 Evolutionary
 (vendor

 proprietary)

 M/H/L/M 6 month time overrun; $1M

 cost overrun; system
 functionality was marginally
 satisfactory

 project
 manager &
 one member I

 ln-house development of a
 faculty load management and
 reporting system for a commu

 nity college

 18 months
 $400K
 3 people

 Agile +
 Waterfall

 H/H/H/M On-time completion; $100K
 cost overrun; system
 functionality was very

 satisfactory

 project
 manager &
 two
 members

 ERP implementation for a
 military organization

 36 months
 $226M
 403 people

 Waterfall L/H/M/L Significant time and cost

 overruns; system
 functionality was largely
 satisfactory

 project
 manager &
 one member I

 ln-house development of a data
 processing system for a
 government agency

 48 months
 $1M
 16 people

 Agile +
 Waterfall

 M/L/L/M 10 month time overrun;

 $1.4M cost overrun; system
 functionality was
 unsatisfactory

 project
 manager &
 two
 members

 Implementation of an off-the

 shelf fund raising system for a
 radio station

 7 months
 $450K
 4 people

 Agile +
 Waterfall

 L/M/M/M On-time completion; $10K
 cost overrun; system
 functionality was largely
 satisfactory

 project
 manager &
 one member I

 MIS Quarterly Vol. 34 No. 1/March 2010 99

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Table 5. Key Findings from Case Studies
 Issues Findings Remark

 When responding to a requirement change, software teams evaluate its impact on business and
 time/cost/scope and its technical difficulty. Their response decision is influenced by these

 tradeoffs. (Cases G, I)

 Insights for
 H6a/b/c

 Relationships
 between
 software

 development
 agility and

 performance
 (H6a/b/c &
 H7a/b/c)

 Time and/or cost constraint is sometimes a main factor for determining the extent of team

 response to changing requirements. (Cases B, H)
 Insights for H6a/b

 High business-impact changes tend to be addressed regardless of constraints. (Case A)

 Too much response interrupts project continuity and may result in poor software systems under

 time/cost pressures. (Cases F, D)

 Insights for H6c

 Extensive responses to changes in early stages can save time and cost in later stages. (Case G) Explains
 unsupported
 H6a/b

 Pursuit of response efficiency may cause quality/functionality problems. (Case A) Insights for H7c

 Standardized processes, methodologies, and tools help manage changes, time, and cost. (Case
 F)
 Teams re-baseline time line and budget to accommodate large changes and relieve time and cost
 constraints. (Case H)

 Insights for
 H6a/b, H7a/b

 More responses generally result in lower response efficiency. (Cases C, I)

 Relationships
 between
 response

 extensiveness
 and response

 efficiency
 (H5)

 Extensive changes affecting the project baseline require approval by upper management, which
 slows down the response process. (Case C)

 Too much response results in work overload for the team, which undermines efficiency. (Case E)

 Validates and
 explains H5

 Responding to too many requirement changes causes lack of focus. (Case D)

 Clear specification of requirements helps strike the balance. (Case F)

 Additional requirements are addressed in the next phase or in a separate project. (Cases D, E)

 Needed changes are spread out across deliverables. (Case E) Insights for H5

 Effective management of time and cost helps achieve greater agility in both response
 extensiveness and response efficiency. (Case I)

 Autonomy generally increases response efficiency. (Case G) Validates H2

 Effect of

 autonomy on
 agility

 (H1a/b&H2)

 Autonomy allows software teams to limit their responses to changes in order to meet overall

 project goals. (Case A)
 Validates H 1b;
 explains
 unsupported H1a

 Autonomy may not be effective for government projects. (Case H)

 Autonomy may not be effective if team members are not competent. (Case A)

 Insights for H1,
 H2

 Diversity helps solve complex problems effectively. (Cases E, F)

 Effect of diversity

 on agility
 (H3 & H4)

 Diversity helps better translate and understand complex requirement changes. (Case C)
 Validates H3

 Diversity slows down team response due to conflicts and costly communication. (Case D)

 Diversity can help solve problems quickly. (Case C)

 Explains
 unsupported H4

 Individuals' expertise, knowledge, skills, and mind-set are important for agility. (Case J) Insights for H3,
 H4

 Relationships Between Software Development
 Agility and Project Performance

 The case study results suggest that software teams dynami
 cally evaluate and manage the complex tensions and tradeoffs
 between software development agility and software develop
 ment performance. When responding to a requirement

 change, software teams holistically assess its business impact,
 its impact on time/cost/scope goals, and its technical diffi
 culty. Based on these assessments, they determine the extent

 to which they respond to user requirement changes.

 // was important to keep balance between how much
 we respond to user change requests and meeting

 100 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/So?ware Development Agility

 time and cost goals. We probably addressed 80
 percent of user requirement requests to make the
 client happy and satisfied. Yet, at the same time, we
 tried to minimize less important changes. (Case G)

 The stakeholder determined the needed require
 ments and the nice-to-haves. The software team
 advises based on technical evaluation what is

 feasible for each requirement. Change requests are
 determined during an engineering review board
 meeting where the project team evaluates the cost
 and scope of the requirement added to the project.
 (Case I)

 Depending on the specific project context, time is sometimes
 the main driver for determining how much the team responds

 to changing requirements, whereas cost can be the main
 consideration in other cases.

 Due to the fact that it was past schedule, I put a very
 tight and stringent change request policy in place.
 (Case B)

 When the project had a tremendous amount of
 requirement changes, the project team could not
 address that many changes simply because they
 were running out of money. (Case H)

 However, we found that high impact, business-disruptive
 requirement changes tend to be addressed almost always,
 regardless of time and cost constraints.

 We really responded to those things that were truly
 business disruptive. So we would get the people that
 needed to be there that knew best about different
 aspects ofthat particular problem, both functionally
 and technically, come up with a design and then
 build it, regression test it, make sure we understood
 what the implications were from a usage perspec
 tive, and then implement that fix. (Case A)

 Although the case results generally confirm the positive effect
 of response extensiveness on software functionality, when
 severe time/cost pressures are present, extensive responses

 may result in poor software functionality due to the lack of
 task continuity and integration.

 Too much response may interrupt the flow and
 continuity of the project execution. Too much
 response also has a tendency to create rush changes
 to meet implementation schedules, which can lead to

 poorly defined and developed solutions. (Case F)

 The tension is you 're going to be spread too thin and
 you 're not going to get them tested well enough and
 integrated well enough, and then you 're not going to

 have a good product at the end. (Case D)

 Notably, some cases suggest that extensive responses should
 not necessarily negatively affect on-time and on-budget
 completion as we hypothesized. If software teams respond to

 many important requirement changes in early stages, they can
 actually save time and cost in later stages. This finding may
 explain why we did not discover a negative effect of response
 extensiveness on on-time and on-budget completion with our
 PLS analysis.

 We tried to respond to changes as much as possible
 early on, and this turned out to save us much time
 and cost down the road. We did not have to deal

 with many changes toward the end of the project.
 (Case G)

 Furthermore, our case results suggest what appears to be con

 tradictory to the PLS results: pursuit of response efficiency
 may cause software functionality problems because efficiency
 may come at the cost of quality if software teams are not
 sufficiently competent.

 We were pretty efficient about it, but not always
 effective, because we would make mistakes. People
 would put the change in and everything would be
 good but then they forgot that they didn't have the
 security set up right. So I think the team was pretty

 efficient but it wasn't quite as effective just because
 of human error and complexity. (Case A)

 While it is a challenge for software teams to be agile while
 meeting other project goals, we found that standardized
 processes/methodologies/tools help manage this tension.

 When possible, teams sometimes re-baseline their project
 goals and relieve time and cost pressures in order to
 accommodate large changes.

 / found that following a standard methodology is
 critical to managing scope and changes. An estab
 lished change control process with tools that track
 changes are essential for managing CRs (change
 requests), cost, and schedule. (Case F)

 Instead of responding to large changes under the
 current constraints of time, cost, and scope goals,
 we sometimes revise the project baseline and set
 new goals to incorporate large-scale changes. By
 so doing, we are free from unrealistic constraints

 MIS Quarterly Vol. 34 No. 1/March 2010 101

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 that did not account for the emergent changes and
 can be more flexible in responding to the changes.
 (Case H)

 Two cases are worth noting: Case was a big failure,
 whereas Case D was a remarkable success, among other
 cases. The difference in their performance can be partly
 explained by their different levels of response extensiveness
 and response efficiency as shown in Table 4. Furthermore,
 our results reveal that the Case team used a very strict
 policy in responding to changing user requirements since they
 were experiencing severe time and cost overruns halfway
 through the project and because they lacked important skills.

 The lack of response to important requirement changes
 rendered the project unsustainable.

 The knowledge of certain aspects of this new appli
 cation was something we didn V have in our skill set,

 which made it difficult to turn things around. (Case
 B)

 In contrast, the team in Case D was highly efficient in
 responding to changes and focused on addressing high
 priority changes. Although they did not incorporate every
 single change request, the final system successfully met most
 of the important user requirements.

 Relationships Between Response Extensiveness
 and Response Efficiency

 With respect to the tension between response extensiveness
 and response efficiency, our case results generally confirm the
 tradeoff between the two.

 There is a diminishing rule of return on that. The
 more change requests you get, you absolutely will
 suffer on the efficiency and quality of looking at that

 change. (Case C)

 The project team yielded fewer implementations but
 greater quality and efficiency for each response, as
 opposed to more responses but less efficiency and
 quality. (Case I)

 Our case results suggest several plausible explanations for this

 tradeoff relationship. Responses to extensive requirement
 changes are more likely to require upper management
 approval due to their significant impact on business and
 project goals. Furthermore, too much response results in
 work overload and lack of focus, thus decreasing response
 efficiency.

 / knew that, based on my forecast, making this
 change would send me so close to budget or over
 budget that it would switch a dashboard color on the
 project, and I would actually need management
 approval for that. (Case C)

 There were times where we had a lot of change
 going on in the project and the team got over
 whelmed and we had to push back. (Case E)

 If I responded to too many change requests, I not
 only got stretched too thin and lost focus but also
 had to shoot at moving targets, and sometimes I felt
 we didn 't even have targets. (Case D)

 We found that project managers tend to believe that they can
 strike the right balance if user requirements are clearly spe
 cified and communicated. Furthermore, by spreading out
 necessary changes across different phases, deliverables, or
 projects, software teams may achieve high response efficiency
 while responding to changes extensively. Effective manage
 ment of time and cost also helps achieve both dimensions of
 agility simultaneously.

 The balance between response extensiveness and
 efficiency comes from the ability of the team to
 clearly define and document specifications related to
 user requirements. (Case F)

 We spread out the deliverables and broke it up into
 three different deliverables, and that was another
 way to balance the number of changes we had on
 this project. We couldfocus on certain changes for
 the December deliverable, then focus on the changes

 for the January deliverable, then focus on the final
 changes. (Case E)

 It is possible to reach both response extensiveness
 and response efficiency if the project cost and time
 is managed effectively throughout. To do so, the

 project team needs to leverage the expertise of the
 staff to make solid project decisions. (Case I)

 Effect of Team Autonomy on Software
 Development Agility

 Our case results confirm that team autonomy generally has a
 positive effect, mainly on response efficiency because of
 empowered decision making by team members.

 Each team member was able to respond to small
 system changes individually although the whole team

 102 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 discussed change requests that are important. We
 were very efficient in responding to change partly
 due to our authority to make decisions. (Case G)

 We found that autonomous software teams occasionally
 limited their responses to changing requirements in order to

 meet project goals because they were empowered to choose
 if and how to respond to changes, whereas less autonomous
 teams had no choice but to take orders from users and

 implement them. This finding partly explains why team
 autonomy was found to have a negative effect, rather than a
 positive effect, on response extensiveness.

 If you can't put a boundary around that, that's
 where you go way out of whack on budget and
 schedule. The business always wants to add addi
 tional things, which were never in the scope of what

 the project was supposed to accomplish. We said
 "No " to a lot of change requests because we were
 empowered to make decisions on our own. (Case A)

 Effect of Team Diversity on Software
 Development Agility

 Our case results confirm that team diversity improves
 response extensiveness because it helps solve various
 problems effectively. Diverse expertise also makes it easier
 to translate and understand a variety of requirement changes.

 The more diverse team will be better able to respond

 to changes because people will bring different levels
 of experience, different background, different skill
 sets. A team that doesn't have that diversity can get
 tunnel vision on a solution and not be as open to
 other options. (Case E)

 The subject matter experts were actually required to
 attend and speak to a change so that it could be
 translated, if you will, for those that don't under
 stand it, which is absolutely critical. (Case C)

 We found that diversity can decrease response efficiency due
 to conflicts and costly communication. On the other hand,
 however, diversity can increase response efficiency through
 accelerated problem-solving enabled by readily available
 expertise and skills. These findings may explain why we
 found no significant effect of team diversity on response
 efficiency.

 The diversity made it more difficult to communicate

 and manage change, because the change required

 interaction amongst a diversity of workgroups, and
 that made it harder for people to be on the same

 page and agree to these changes. (Case D)

 The make-up of the team, by getting a lot of subject
 matter experts, resulted in the ability to get answers

 quickly and to have sort of an automatic trust that
 the person knows the right answer and you don't
 have to look for somebody else to validate that.
 (Case C)

 Discussion 1

 Implications for Research and Practice

 Our research approach, combining both quantitative and
 qualitative data analyses, allowed us to not only statistically
 test the hypotheses, but also complement the quantitative PLS

 results with richer explanations and insights obtained from the
 case studies. The benefits from the case studies are three

 fold: (1) the case study results validate and explain the sup
 ported hypotheses; (2) the results provide explanations for the

 unsupported hypotheses; (3) the results reveal rich, additional
 insights on the complex relationships among the constructs
 above and beyond the quantitative results.

 The findings and insights of this research have significant
 implications to research and practice in agile development
 approaches. As our results suggest a negative effect of
 response extensiveness on response efficiency, examining
 only the aggregate agility may produce misleading results.
 Researchers should distinguish between response exten
 siveness and response efficiency when developing and testing
 theories in agile development. This negative effect occurs in
 part because extensive responses are likely to cause work
 overload and lack of software team focus and require time
 consuming involvement of upper management. However, a
 possible reverse direction of the relationship?that is,
 response efficiency affecting response extensiveness?should
 not be completely ruled out as the relationship is yet to be
 fully understood. A software team's efficiency in responding
 to changes may determine the extent of changes to which the

 team responds. With this reasoning, however, response
 efficiency is expected to positively affect response exten
 siveness, which is not consistent with our results. Future
 research should further investigate if the reverse causality can

 happen under certain conditions. Practitioners need to be
 aware of the multifaceted nature of software development
 agility and understand the tension between its two different
 dimensions in order to build appropriate types of agility.

 MIS Quarterly Vol. 34 No. 1/March 2010 103

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Software teams can maintain an appropriate balance between
 the two agility dimensions by implementing such agile
 development practices as short, incremental iterations and
 time boxing methods.

 The agile literature tends to take a simplistic view on the
 tension between software development agility and develop

 ment performance; it views agility to be universally desirable
 and does not recognize differential effects of agility on
 different aspects of development performance. Our PLS
 results show that response extensiveness has a positive effect
 only on software functionality, whereas response efficiency
 has a positive effect on on-time/on-budget completion as well
 as software functionality. Therefore, software teams should
 take cautions when implementing such agile principles as
 'Welcome changing requirements even late in development":

 when time and cost are top priorities, teams can be better off
 by selectively responding to changing requirements and thus
 increasing response efficiency. Agile practices such as
 "decision in one hour" in Scrum can be useful for improving
 response efficiency.

 Our case results provide a plausible explanation for the non
 significant effect of response extensiveness on on-time and
 on-budget completion. While extensive responses generally
 require substantial time, cost, and resources, extensive
 responses in early development stages can save software
 development time and cost for later development stages.
 Therefore, extensive responses might have both positive and
 negative effects on on-time and on-budget completion,
 resulting in a nonsignificant net effect. Our case results also
 suggest that, contrary to our PLS results, it is possible for
 response efficiency to negatively affect software functionality
 as efficiency might compromise system quality if the team is
 not competent. Similarly, extensive responses can negatively
 affect software functionality under severe time/cost
 constraints.

 Agile development approaches advocate self-organizing,
 autonomous teams with cross-functional, diverse members.

 However, no theoretical foundation or empirical evidence has
 been provided in support of the principle. This research
 provides empirical evidence that team autonomy and team
 diversity are important team variables that organizations can
 control to build their software development agility. More
 importantly, team autonomy and team diversity do not
 universally increase software development agility. The
 results suggest that increased autonomy without increased
 diversity may result in decreased response extensiveness, and
 that only autonomy, not diversity, increases response
 efficiency. The results suggest that a software team needs to
 manage team autonomy and diversity based on which

 dimension of agility the team needs to address. Software
 teams should be aware of a potential negative effect of self
 organization on their ability to respond to a wide range of
 changes. When implementing "the whole team" and "pair
 programming" with XP, the team and the pairs should have
 a high degree of diversity for greater response extensiveness.

 Our case results suggest that autonomous software teams may

 strictly limit their responses to changing requirements in order

 to meet other project goals such as time and cost. However,
 researchers should not entirely rule out the possibility that
 autonomy may actually increase response extensiveness since
 autonomous teams, in theory, are free to choose their actions

 in either direction. Future research should further investigate
 this relationship. In addition, our case results suggest two
 opposite effects of team diversity on response efficiency.

 While diversity may cause conflicts and costly communi
 cation, it may accelerate a software team's response process,
 thanks to readily available expertise and skills. These
 findings partly explain the nonsignificant effect of diversity
 on response efficiency as its positive and negative effects may
 be cancelled out.

 Limitations

 Although we employed a rigorous, multiphase approach to the
 development of new measures for response extensiveness and
 response efficiency, the new measures have some limitations.

 While response extensiveness is measured by the count of
 incorporated changes vis-?-vis total changes, it would have
 been more accurately measured using the amount of addi
 tional scope, above and beyond the original scope, in terms of
 such metrics as function points. Furthermore, response
 extensiveness measures the extent to which a software team

 actually implemented and incorporated various changes into
 the system while not fully capturing other forms of team
 responses. A software team may just as well respond to
 requirement changes by rejecting or postponing them to meet
 other important project goals. A more comprehensive mea
 sure is desirable to fully capture different forms of software
 team responses.

 Our measure for response efficiency did not take into account
 the fact that different requirement changes from different

 development phases might have different levels of business
 impact and response difficulties. Therefore, combining all
 phases in the measure may not precisely capture how efficient
 a team's responses were. To measure it more accurately,
 appropriate weights based on relative impact and difficulty
 need to be assigned to different types of changes. Another

 104 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/So?ware Development Agility

 issue associated with the response efficiency measure is that
 survey respondents may have had a lack of clear guidance in
 interpreting the measurement question and assessing relative
 time, cost, and resources required in responding to a given
 requirement change. Although we have found no statistical
 evidence that suggests any measurement problems due to
 potential misinterpretation, future research is needed to
 further validate the measure.

 Conclusions

 Due to the ever-increasing uncertainty in business and
 technology environments, the agility to effectively deal with
 changing requirements has become an imperative, not an
 option, for software development. Given the complex rela
 tionships among response extensiveness, response efficiency,
 team autonomy, team diversity, and software development
 performance, software teams face difficult challenges in
 identifying and achieving the right balance between the two
 agility dimensions. While the prior agile development litera
 ture offers little guidance for such challenges, this research
 offers some useful insights that are theoretically based and
 empirically tested. Software teams should first prioritize the
 performance goals of time, cost, and functionality, which will

 determine how much each dimension of agility is needed.
 That, in turn, will determine how much autonomy and
 diversity their software teams should require.

 Since this research is one of the initial efforts to empirically
 examine the principles and practices of agile development
 approaches, we believe that many important questions and
 issues are yet to be answered in this important area. We hope
 our study serves as a stepping-stone for developing and
 testing theories that guide the agile development principles
 and practices so that organizations can effectively build and
 sustain software development agility that will ultimately
 improve their software development performance.

 Acknowledgments

 This study was supported by research grants provided by the Uni
 versity of Minnesota, the Juran Center for Leadership in Quality,
 and the UPS (United Parcel Service) Foundation. The Information
 Systems Specific Interest Group of the Project Management Institute
 sponsored the collection of the survey data. We thank Carl Adams,
 Izak Benbasat, Erran Carmel, Gordon Davis, William DeLone,
 J. Alberto Espinosa, Jungpil Hahn, Anita LaSalle, Bob Zmud,
 and research workshop participants at the American University,
 Lehigh University, Syracuse University, Tulane University, the
 University of British Columbia, and the University of Minnesota
 for helpful comments on earlier versions of the paper.

 References

 Agile Alliance. 2001. "Manifesto for Agile Software Develop
 ment" (www.agilemanifesto.org).

 Aladwani, A. M. 2002. "An Integrated Performance Model of
 Information Systems Projects," Journal of Management Infor
 mation Systems (19:1), pp. 185-210.

 Ancona, D., and Caldwell, D. 1992. "Demography and Design:
 Predictors of New Product Team Performance," Organization
 Science (3:3), pp. 321-341.

 Ashby, W. R. 1956. An Introduction to Cybernetics, London:
 Chapman and Hall.

 Austin, R., and Devin, L. 2003. Artful Making: What Managers
 Need to Know About How Artists Work, Boston: Financial Times
 Prentice Hall.

 Bailey, K. D. 19871 Methods of Social Research, New York: Free
 Press.

 Baskerville, R. L. 2006. "Artful Planning," European Journal of
 Information Systems (15:2), pp. 113-115.

 Beck, K., and Andres, C. 2005. Extreme Programming Explained:
 Embrace Change, Boston: Addison-Wesley.

 Boehm, B. W., and Turner, R. 2004. Balancing Agility and Disci
 pline: A Guide for the Perplexed, Boston: Addison-Wesley.

 Breaugh, J. A. 1985. "The Measurement of Work Autonomy,"
 Human Relations (38:6), pp. 551-570.

 Campion, .A.,Medsker,G.J.,andHiggs,A.C. 1993. "Relations
 Between Work Group Characteristics and Effectiveness: Impli
 cations for Designing Effective Work Groups," Personnel
 Psychology (46:4), pp. 823-850.

 Chin, W. W. 1998. "The Partial Least Square Approach to
 Structural Equation Modeling," in Modern Methods for Business
 Research, G. A. Marcoulides (ed.), Mahwah, NJ: Lawrence
 Erlbaum Associates, Inc.

 Chow, T., and Cao, D.-B. 2008. "A Survey Study of Critical
 Success Factors in Agile Software Projects," The Journal of
 Systems and Software (81:6), pp. 961-971.

 Clark, K. B., and Fujimoto, T. 1991. Product Development
 Performance, Boston: Harvard Business School Press.

 Coad, P., De Luca, J., and Lefebre, E. 1999. Java Modeling in
 Color, Englewood Cliffs, NJ: Prentice Hall.

 Cockbum, A. 2001. Agile Software Development, Boston:
 Addison-Wesley.

 Cockbum, A. 2007. Agile Software Development: The Coopera
 tive Game, Boston: Addison-Wesley.

 Cockbum, A., and Highsmith, J. 2001. "Agile Software Devel
 opment: The People Factor," IEEE Computer (34:11), pp.
 131-133.

 Conboy, K., and Fitzgerald, B. 2004. "Toward a Conceptual
 Framework of Agile Methods," in Proceedings of the 2004 ACM
 Worhhop on Interdisciplinary Software Engineering Research,
 Newport Beach, CA, November 5, 2004, pp. 37-44.

 Deephouse, C, Mukhopadhyay, T., Goldenson, D. R., and Keller,
 M. I. 1996. "Software Processes and Project Performance,"
 Journal of Management Information Systems (12:3), pp. 187-205.

 Diamantopoulos, A., and Siguaw, J. A. 2006. "Formative Versus
 Reflective Indicators in Organizational Measure Development:

 MIS Quarterly Vol. 34 No. 1/March 2010 105

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 A Comparison and Empirical Illustration," British Journal of
 Management (17:4), pp. 263-282.

 Diamantopoulos, A., and Winklhofer, . M. 2001. "Index Con
 struction with Formative Indicators: An Alternative to Scale

 Development," Journal of Marketing Research (38:2), pp.
 269-277.

 Dyb?, T., and Dingsoyr, T. 2008. "Empirical Studies of Agile
 Software Development: A Systematic Review," Information and
 Software Technology (50:9-10), pp. 833-859.

 Erickson, J., Lyytinen, K., and Siau, K. 2005. "Agile Modeling,
 Agile Software Development, and Extreme Programming: The
 State of Research," Journal ojDatabase Management(16:4), pp.
 88-100.

 Fitzgerald, B., Hartnett, G., and Conboy, K. 2006. "Customising
 Agile Methods to Software Practices at Intel Shannon,"
 European Journal of Information Systems (15:2), pp. 200-213.

 Fr?hling, A., and De Vreede, G.-J. 2006. "Field Experiences with
 eXtreme Programming: Developing an Emergency Response
 System," Journal of 'ManagementInformation Systems (22:4), pp.
 39-68.

 Gefen, D., and Ridings, C. M. 2002. "Implementation Team
 Responsiveness and User Evaluation of Customer Relationship
 Management: A Quasi-Experimental Design Study of Social
 Exchange Theory," Journal of Management Information Systems
 (19:1), pp. 47-69.

 Gefen, D., Straub, D. W., and Boudreau, M.-C. 2000. "Structural
 Equation Modeling and Regression: Guidelines for Research
 Practice," Communications of the AIS (4:7), pp. 1-77.

 Henderson-Sellers, B., and Serour, M. K. 2005. "Creating a
 Dual-Agility Method: The Value of Method Engineering,"
 Journal of Database Management (16:4), pp. 1-23.

 Highsmith, J. 2000. Adaptive Software Development: A Col
 laborative Approach to Managing Complex Systems, New York:

 Dorset House Publishing.
 Highsmith, J. 2002. "Agile Project Management: Principles and

 Tools," Cutter Consortium Executive Report, March 9 (available
 online at http://www.cutterconsortium.com/research/2004/
 edge040309.html).

 Highsmith, J. 2004. Agile Project Management, Boston:
 Addison-Wesley.

 Imai, K., Ikujiro, N., and Takeuchi, H. 1985. "Managing the New
 Product Development Process: How Japanese Companies Learn
 and Unlearn," in The Uneasy Alliance, R. H. Hayes, . B. Clark,
 and C. Lorenz (eds.), Boston: Harvard Business School Press,
 pp. 337-375.

 Janz, B. D., Wetherbe, J. C, Davis, G. B, and Noe, R. A. 1997.
 "Reengineering the Systems Development Process: The Link
 between Autonomous Teams and Business Process Outcomes,"

 Journal of Management Information Systems (14:1), pp. 41-68.
 Kaplan, B., and Duchon, D. 1988. "Combining Qualitative and

 Quantitative Methods in Information Systems Research: A Case
 Study" MS Quarterly (12:4), pp. 571-586.

 Kelly, A. 2008. Changing Software Development: Learning to
 Become Agile, Chichester, England: John Wiley & Sons.

 Kerzner, H. 2005. Project Management: A Systems Approach to
 Planning, Scheduling, and Controlling, Hoboken, NJ: Wiley.

 Klimoski, R. J., and Mohammed, S. 1994. "Team Mental Model:
 Construct or Metaphor," Journal of Management (20:2), pp.
 403-437.

 Koch, C. 2006. "The Truth about SOA," CIO, June 15 (available
 online at http://www.cio.com/article/21975/The_Truth_
 About_SOA).

 Larman, C. 2004. Agile & Iterative Development: A Manager's
 Guide, Boston: Addison-Wesley.

 Lee, A. S. 1991. "Integrating Positivist and Interpretive Ap
 proaches to Organizational Research," Organization Science
 (2:4), pp. 342-365.

 Loch, K. D., Straub, D. W., and Kamel, S. 2003. "Diffusing the
 Internet in the Arab World: The Role of Social Norms and

 Technological Culturation," IEEE Transactions on Engineering
 Management (50:1), pp. 45-63.

 Lyytinen, K., and Rose, G. M. 2006. "Information System Devel
 opment Agility as Organizational Learning," European Journal
 of Information Systems (15:2), pp. 183-199.

 MacCormack, A., Verganti, R., and Iansiti, M. 2001. "Developing
 Products on 'Internet Time': The Anatomy of a Flexible Devel
 opment Process," Management Science (47:1), pp. 133-150.

 Malhotra,N.K.,Kim,S. S., and Patii, A. 2006. "Common Method
 Variance in IS Research: A Comparison of Alternative
 Approaches and a Reanalysis of Past Research," Management
 Science (52:12), pp. 1865-1883.

 Mathieu, J., Goodwin, G. F., Heffher, T. S., Salas, E., and Cannon
 Bowers, J. A. 2000. "The Influence of Shared Mental Models on

 Team Process and Performance," Journal of Applied Psychology
 (85:2), pp. 273-283.

 McGrath, R. G. 2001. "Exploratory Learning, Innovative Capacity,
 and Managerial Oversight," Academy of Management Journal
 (44:1), pp. 118-131.

 Miller, C. C, Burkle, L. M., and Glick, W. H. 1998. "Cognitive
 Diversity Among Upper-Echelon Executives: Implications for
 Strategic Decision Processes," Strategic Management Journal
 (19:1), pp. 39-58.

 Milliken, F. J., and Martins, L. L. 1996. "Searching for Common
 Threads: Understanding the Multiple Effects of Diversity in
 Organizational Groups," Academy of Management Review (21:2),
 pp. 402-433.

 Mingers, J. 2001. "Combining IS Research Methods: Towards a
 Pluralist Methodology," Information Systems Research (12:3),
 pp. 240-259.

 Mitchell, V. L. 2006. "Knowledge Integration and Information
 Technology Project Performance," MIS Quarterly (30:4), pp.
 919-939.

 Moe, N. B., Dingsoyr, T., and Dyb?, T. 2008. "Understanding
 Self-Organizing Teams in Agile Software Development,"
 Proceedings of the 19th Australian Conferences on Software
 Engineering, Perth, Australia, pp. 76-85.

 Moore, G. C, and Benbasat, I. 1991. "Development of an Instru
 ment to Measure the Perceptions of Adopting an Information
 Technology Innovation," Information Systems Research (2:3),
 pp. 192-222.

 Nerur, S., and Balijepally, V. 2007. "Theoretical Reflections on
 Agile Development Methodologies," Communications of the
 ACM(50:3), pp. 79-83.

 106 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Nidumolu,S.R. 1995. "The Effect of Coordination and Uncertainty
 on Software Project Performance: Residual Performance Risk as
 an Intervening Variable," Information Systems Research (6:3),
 pp. 191-219.

 Pelled, L. H., Eisenhardt, . M., and Xin, K. R. 1999. "Exploring
 the Black Box: An Analysis of Work Group Diversity, Conflict,
 and Performance," Administrative Science Quarterly (44:1), pp.
 1-28.

 Petter, S., Straub, D., and Rai, A. 2007. "Specifying Formative
 Constructs in Information Systems Research," MIS Quarterly
 (31:4), pp. 623-656.

 Podsakoff, P.M., and Organ, D.W. 1986. "Self-Reports in Organi
 zational Research: Problems and Prospects," Journal of

 Management (12:4), pp. 531-544.
 Qumer, A., and Henderson-Sellers, B. 2008. "An Evaluation of the

 Degree of Agility in Six Agile Methods and its Applicability for
 Method Engineering," Information and Software Technology
 (50:4), pp. 280-295.

 Schmidt, R, Lyytinen, K., Keil, M., and Cule, P. 2001. "Identi
 fying Software Project Risks: An International Delphi Study,"
 Journal of Management Information Systems (17:4), pp. 5-36.

 Schwaber, K., and Beedle, M. 2002. Agile Software Development
 with Scrum, Upper Saddle River, NJ: Prentice-Hall.

 Sharp, H, and Robinson, H. 2004. "An Ethnographic Study of XP
 Practice," Empirical Software Engineering (9:4), pp. 353-375.

 Sivo, S. A., Saunders, C, Chang, Q., and Jiang, J. J. 2006. "How
 Low Should You Go? Low Response Rates and the Validity of
 Inference in IS Questionnaire Research," Journal of the AIS
 (7:6), pp. 351-414.

 Stapleton, J. 1997. DSDM: Dynamic Systems Development
 Method, Harlow, England: Addison Wesley.

 Tata, J., and Prasad, S. 2004. "Team Self-Management, Organi
 zational Structure, and Judgments of Team Effectiveness,"
 Journal of Managerial Issues (16:2), pp. 248-265.

 Tatikonda, M. V., and Rosenthal, S. R. 2000. "Successful Execu
 tion of Product Development Projects: Balancing Firmness and
 Flexibility in the Innovation Process," Journal of Operations

 Management (18:4), pp. 401-425.
 Trauth, E. M., and Jessup, L. M. 2000. "Understanding Computer

 Mediated Discussions: Positivist and Interpretive Analyses of
 Group Support System Use," MS Quarterly (24:1), pp. 43-79.

 Turner, J. C, Hogg, . A., Oakes, P. J., Reicher, S. D., and
 Wethereil, M. S. 1987. Rediscovering the Social Group: A Self
 Organization Theory, New York: Blackwell.

 Tushman, M. L., and O'Reilly, C. A. 1996. "Ambidextrous Organi
 zations: Managing Evolutionary and Revolutionary Change,"
 California Management Review (38:4), pp. 8-30.

 Van de Ven, A. H, and Delbecq, A. L. 1974. "The Effectiveness
 of Nominal, Delphi, and Interacting Group Decision Making
 Processes," Academy of Management Journal (17:4), pp.
 605-621.

 Watson, E. W., Kumar, K., and Michaelsen, L. K. 1993. "Cultural
 Diversity's Impact on Interaction Process and Performance:
 Comparing Homogeneous and Diverse Take Groups," Academy
 of Management Journal (36:3), pp. 590-602.

 Webber, S. S., and Donahue, L. M. 2001. "Impact of Highly and
 Less Job-Related Diversity on Work Group Cohesion and

 Performance : A Meta-Analysis," Journal ofManagement (27:2),
 pp. 141-162.

 Weitzel, J. R., and Graen, G. . 1989. "Systems Development
 Project Effectiveness: Problem-Solving Competence as a
 Moderator Variable," Decision Sciences (20:3), pp. 507-531.

 Werts, C. E., Linn, R. L., and Joreskog, K. G. 1974. "Intraclass
 Reliability Estimates: Testing Structural Assumptions," Educa
 tional and Psychological Measurement (34:1), pp. 25-33.

 Williams, . Y., and O'Reilly, C. A. 1998. "Demography and
 Diversity in Organizations: A Review of 40 Years of Research,"
 in Research in Organizational Behavior, . M. Staw and L. L.
 Cummings (eds.), Greenwich, CT: JAI Press, pp. 77-140.

 Yi, . Y., and Davis, F. D. 2003. "Developing and Validating an
 Observational Learning Model of Computer Software Training
 and Skill Acquisition," Information Systems Research (14:2), pp.
 146-169.

 Zmud, R. W. 1982. "Diffusion of Modem Software Practices:
 Influence of Centralization and Formalization," Management
 Science (28:12), pp. 1421-1431.

 About the Authors

 Gwanhoo Lee is an associate professor and UPS Faculty Scholar in
 the Kogod School of Business at the American University,

 Washington, DC. He is the director of the Center for IT and the
 Global Economy at the American University. His research areas
 include software development agility and complexity, distributed
 software teams, IT-enabled collaboration and innovation, technology
 adoption, and CIO leadership. He has been working closely with IT
 executives from large U.S. organizations on those research areas
 through collaborative forums and programs. His research has been
 published in Journal of Management Information Systems, European
 Journal of Information Systems, Communications of the ACM,
 Information & Management, Information Technology and People,
 IEEE Pervasive Computing, Journal of Information Technology
 Management, and Academy of Management Best Paper Pro
 ceedings, as well as in the proceedings of the International Con
 ference on Information Systems, the Hawaii International Con
 ference on System Sciences, and the Americas Conference on
 Information Systems. He earned his doctorate in management
 information systems from the University of Minnesota.

 Weidong Xia is a faculty member in the College of Business
 Administration at Florida International University. His research
 focuses on IT strategy and governance, software development com
 plexity and flexibility, and innovation adoption. He was on the
 faculty of the Carlson School of Management at the University of

 Minnesota. He has worked with a number of large companies as the
 cofounder and codirector of the CIO Research Consortium. His

 research has been published in MS Quarterly, Decision Sciences,
 Journal of Management Information Systems, Communications of
 the ACM, European Journal of Information Systems, Journal of
 Information Technology Management, Journal of Statistics and

 Management Systems, International Journal of Career Development,
 and Journal of End-User Computing. He received his doctorate in
 information systems from the University of Pittsburgh.

 MIS Quarterly Vol. 34 No. 1/March 2010 107

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Appendix A
 The Research Process

 Table Al provides detailed information about our five-phase research process, including subject characteristics, outcomes, and techniques/
 methods/processes. In Phase 1, we formulated research questions and identified key constructs of the research through preliminary field
 interviews with 36 IS managers and executives who were affiliated with an academic research center at a large U.S. public university. The

 questions asked during 90-minute semi-structured interviews included

 (1) How would you define agility in the context of business software development?
 (2) What are the important dimensions of software development agility?
 (3) How does software development agility affect software development performance?
 (4) What factors are important for building software development agility?

 Then, we conducted a focus group brainstorming session with another 45 IS managers who enrolled in the part-time MBA programs at the same

 university. A brief summary of the preliminary interview results was presented to the group to provide the initial conceptualization of software

 development agility. Using the nominal group technique (Van de Ven and Delbecq 1974), the participants created a list of measures of software

 development agility. As a result, we obtained 24 initial measures for software team response extensiveness and software team response
 efficiency, respectively.

 The initial measurement items were refined through a sorting procedure and two pilot tests of the survey instrument. We followed the sorting

 procedure used by Moore and Benbasat (1991) to qualitatively assess the construct validity of measurement items. Each measurement item
 was placed into an appropriate category by four judges who were doctoral candidates with extensive IS project experience. The item placement

 hit ratio was 91 percent, which was calculated by dividing the number of items correctly placed by the total number of items. Several items

 were dropped because they were too ambiguous or unclear.

 The items were further refined by two pilot tests of the survey instrument. The first pilot test was conducted through one-hour interviews with

 another four IS managers and three IS doctoral students affiliated with the university. The participants evaluated the importance and relevance

 of each measurement item of software development agility. The items that had higher mean scores in both importance and relevance were

 retained. As a result, we retained six items for response extensiveness and another six items for response efficiency. The second pilot test

 involved another 15 IS managers. The participants validated a prototype of our on-line survey questionnaire in terms of readability, format,

 and wording. Based on the feedback, the format of the questionnaire was improved and the wordings of the measurement items were fine-tuned.

 There was no overlapping of study participants across the different sessions in Phase 1 and none of them participated in the main field survey
 in Phase 2.

 In Phase 2, we used a Web-based online instrument to collect quantitative survey data from project managers of software development projects.

 A PMI-ISSIG-sponsored e-mail letter with a hyperlink to our online survey was sent to the target group. The participants were entered into

 a drawing to receive 10 awards of a PMI-ISSIG official shirt and 40 awards of a $25 gift certificate. A reminder was sent 2 weeks after the
 initial PMI-ISSIG-sponsored e-mail was sent out, followed by a second email reminder 2 weeks later.

 After the data was obtained, we validated convergent validity, discriminant validity, and reliability of the measures in Phase 3, using different

 approaches for reflective measures and formative measures, following the guidelines recommended by Petter et al. (2007). Appendix C shows
 the details of measurement validation. In addition, we assessed nonresponse bias and common method variance to ensure that the PLS results

 were not biased.

 In Phase 4, we used partial least square (PLS) to test the research model. PLS is more appropriate than LISREL for exploratory research (Chin
 1998; Petter et al. 2007). Response extensiveness and response efficiency are formative latent variables. Furthermore, as these two constructs

 are newly proposed in this research, the hypotheses are exploratory in nature. After testing the proposed research model, we also tested a

 modified PLS model where overall software development performance is modeled as a second-order construct that combines on-time
 completion, on-budget completion, and software functionality.

 In Phase 5, we conducted post hoc case studies on 10 software development projects selected from the survey sample in order to provide

 complementary, additional, richer insights and findings on the complex relationships between software development agility, autonomy, diver

 108 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Table A1. Multiphase, Multimethod, Research Process
 Phase Research Process and Results

 Phase 1
 Preliminary

 field studies for

 problem formulation,
 construct

 identification, and
 measurement
 development

 Preliminary field interviews
 - 90 minute semi-structured interviews with 36 IS managers and executives
 - The interviewees were affiliated with a research center at a large U.S. public university and

 represented a variety of industries including manufacturing, financial services, healthcare,
 consulting service, restaurant, insurance, agriculture, transportation, package delivery service,
 and medical equipment

 - The interviewees had over 10 years of IS work experience on average
 - Constructs were identified and defined; research questions were formulated
 Focus group session
 - A one-hour brainstorming session with 45 IS managers
 - The participants were part-time MBA students at a large U.S. public university
 - The participants had minimum 3 years of work experience
 - Using the nominal group technique (Van de Ven and Delbecq 1974), participants created a list

 of measures of software development agility and ranked them
 - 24 initial items for response extensiveness and response efficiency were generated
 A sorting procedure
 - The procedure used by Moore and Benbasat (1991) was conducted
 - Four judges were doctoral candidates in information systems with an average 8 years of prior

 work experience
 - A placement hit ratio of 91 %
 Pilot tests of the survey instrument
 - The first pilot test involved four IS managers and three doctoral students and evaluated

 importance and relevance of measures
 - The second pilot test involved 15 IS managers and validated the on-line survey questionnaire
 - All participants had at least 4 years of work experience in the IS field
 - Six items for response extensiveness and response efficiency were retained
 - The on-line survey questionnaire was finalized

 Phase 2
 Survey data
 collection

 An online survey was administered
 - Target respondents were 1,740 PMI-ISSIG members
 - 505 valid responses with an effective response ratio of 29%

 Phase 3
 Measurement

 validation

 Different methods were used for validating reflective vs. formative measures
 Validation of convergent/discriminant validity and reliability
 Assessment of nonresponse bias and common method variance

 Phase 4
 Hypotheses testing

 PLS was used to analyze the final sample of 399 projects
 Estimation of structural path coefficients and R2
 Additional data analysis was conducted
 A model with a second order construct for software development performance

 Phase 5
 Post hoc

 case studies
 for rich, additional

 insights

 Field interviews with 17 project managers and team members from 10 cases
 90 minute semi-structured interviews

 Interview results were compared within and across cases
 Validation of and plausible explanations for the PLS results
 Rich, additional insights and findings
 Identification of other important factors for further research

 sity, and performance. We conducted 17 semi-structured interviews for 10 cases with project managers and team members (see Table 4 for

 details). All interviews were one-on-one meetings and were about 90 minutes long. The questions asked during the interview included

 How does the software team determine the importance/priority of changes? How does the software team decide on how a particular
 change request should be handled?

 How would you describe the relationship and tension between response extensiveness and response efficiency? How does the
 software team strike a balance between them?

 MIS Quarterly Vol. 34 No. 1/March 2010 109

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/So?ware Development Agility

 How did various agile development practices affect software development agility?
 How would you describe the tension between (1) needs for meeting time, cost, and scope, and (2) needs for implementing user
 requirement changes? How does the software team go about managing this tension?
 How does team autonomy and diversity affect software development agility?
 What are the other organizational/technological factors that affect software development agility?

 Each interview was recorded and transcribed for analysis. We identified important comments from each interview and compared them within
 and across cases. We found that comments from multiple interviewees within cases were largely consistent. However, when there were notable

 differences, we asked the interviewees to clarify and resolve the differences. We obtained key insights through several iterations of comparing
 and contrasting interview comments.

 Appendix
 Measurement Scales and Items I

 Software team response extensiveness (formative) (1 = 0%; 2 = 20%, 3 = 40%, 4 = 60%, 5 = 80%, 6 = 100%)
 To what extent did the software team actually incorporate requirement changes in each of the following categories? (For example, if the project

 actually incorporated four out of ten different changes in a specific category, your answer would be 40 %.)

 1. System scope (EXT 1)
 2. System input data (EXT2)
 3. System output data (EXT3)
 4. Business rules/processes (EXT4)
 5. Data structure (EXT5)
 6. User interface (EXT6)

 Software team response efficiency1 (formative) (1 = very little; 7 = very much)
 How much additional effort was required by the software team to incorporate the following changes? (Effort includes time, cost, personnel,
 and resources.)
 1. System scope (EFF1)
 2. System input data (EFF2)
 2. System output data (EFF3)
 4. Business rules/processes (EFF4)
 5. Data structure (EFF5)
 6. User interface (EFF6)

 Software team autonomy (reflective) (1 = strongly disagree; 7 = strongly agree)
 1. The project team was allowed to freely choose tools and technologies (AUTOl)
 2. The project team had control over what they were supposed to accomplish (AUT02)
 3. The project team was granted autonomy on how to handle user requirement changes (AUT03)
 4. The project team was free to assign personnel to the project (AUT04)

 Software team diversity (reflective) (1 = strongly disagree; 7 = strongly agree)
 1. The members of the project team were from different areas of expertise (DIVI)
 2. The members of the project team had skills that complemented each other (DIV2)
 3. The members of the project team had a variety of different experiences (DIV3)
 4. The members of the project team varied in functional backgrounds (DIV4)

 Software functionality (reflective) (1 = strongly disagree; 7 = strongly agree)
 1. The software delivered by the project achieved its functional goals (FUNC1)
 2. The software delivered by the project met end-user requirements (FUNC2)
 3. The capabilities of the software fit end-user needs (FUNC3)
 4. The software met technical requirements (FUNC4)

 110 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 On-time completion (OnTime) (reflective)
 1. Objective measure: project start date: (rnm/dd/yyyy), planned completion date: (rnm/dd/yyyy), actual completion date (mm/dd/yyyy)

 2. Perception-based measure2 (1 = strongly disagree; 7 = strongly agree)
 The project was completed late according to the original schedule

 On-budget completion (OnBudget) (reflective)
 1. Objective measure: planned project cost: (in dollar), actual project cost: (in dollar)
 2. Perception-based measure2 (1 = strongly disagree; 7 = strongly agree)

 The project was completed over budget according to the original budget

 Notes: 1. These scale items were reversed for data analysis. With the reversed scales, higher scores indicated higher response efficiency.

 2. These items were reversed for data analysis. With the reversed scales, higher scores indicated higher project performance.

 Appendix C
 Measurement Validation

 The reliability indexes of latent constructs with reflective indicators were evaluated by composite reliability. Composite reliability of 0.70 or

 higher is considered acceptable (Werts et al. 1974). For adequate convergent and discriminant validity, the square root of the average variance

 extracted (AVE) should be at least 0.707 and exceed the correlations between the focal construct and other constructs (Gefen et al. 2000).
 Furthermore, standardized item loadings should be greater than 0.70 and items should load more highly on their intended construct than on

 other constructs (Gefen et al. 2000).

 The measurement validation results for the reflective constructs are shown in Tables Cl and C2. The results suggest that composite reliability

 indexes for the three perceptually measured reflective constructs (team autonomy, team diversity, and software functionality) are much higher

 than 0.70. The square root of the variance extracted (AVE) for all constructs is higher than 0.707, all standardized item loadings except for

 AUT04 are greater than 0.70, and all items load more highly on their intended construct than on other constructs. Since on-time completion

 and on-budget completion were each measured by a single item derived from objective performance data, their AVE is 1.0 and their reliability

 cannot be calculated. Although the factor loading of AUT04 to autonomy is slightly lower (0.690) than the criterion of .70, this item loads
 much more highly on autonomy than on other constructs. Moreover, the composite reliability of the latent construct team autonomy decreases
 if AUT04 is removed. Therefore, it deems reasonable to retain AUT04 for data analysis.

 Table C1. Reliability and Convergent and Discriminant Validity for Reflective Constructs
 Latent

 Construct
 Composite
 Reliability Autonomy Diversity Functionality On Time On Budget

 Autonomy 0.839 0.753
 Diversity 0.883 0.003 0.809
 Functionality 0.966 0.037 0.197 0.937
 On Time n/a 0.269 0.074 0.044 1.000
 On Budget n/a 0.310 0.022 0.029 0.633 1.000

 Notes: Composite reliability (pc) = (??)2 / [(??)2 + var(??)], where ?? is the component loading to an indicator and var (??) = 1 - A?2; diagonal
 elements in bold case are the square root of average variance extracted (AVE) by latent constructs from their indicators; off-diagonal elements
 are correlations among latent constructs.

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Table C2. PLS Component-Based Analysis: Cross-Loadings for Reflective Constructs
 Scale Items Autonomy Diversity Functionality On Time On Budget

 AUT01 0.728 -0.054 -0.033 0.161 0.204
 AUT02 0.793 0.040 0.084 0.304 0.289
 AUT03 0.802 0.005 0.052 0.192 0.271
 AUT04 0.690 0.028 0.005 0.144 0.167
 DIV1 -0.083 0.758 0.037 0.017 -0.009
 DIV2 0.117 0.743 0.297 0.188 0.084
 DIV3 -0.005 0.864 0.177 0.059 0.006
 DIV4 0.007 0.882 0.158 0.007 0.006
 FUNC1 0.037 0.168 0.945 0.053 0.024
 FUNC2 0.040 0.190 0.956 0.061 0.032
 FUNC3 0.054 0.195 0.943 0.024 0.019
 FUNC4 0.007 0.201 0.925 0.030 0.032
 On Time 0.267 0.078 0.045 1.000 0.633
 On Budget 0.310 0.024 0.028 0.633 1.000

 Notes: To calculate cross-loadings, a factor score for each construct was
 scores were correlated with individual items to calculate cross loadings,
 construct.

 calculated based on the weighted sum, provided by PLS results. Factor
 Boldface numbers are loadings (correlations) of indicators to their own

 We followed the guidelines proposed by Petter et al. (2007) to validate the measurement of software team response extensiveness and software

 team response efficiency. We used a modified MTMM (multitrait-multimethod matrix) analysis proposed by Loch et al. (2003) for validating

 convergent and discriminant validity. We created a weighted score for each construct using the formative weights provided by PLS results.

 We then created a correlation matrix consisting of the indicators and formative latent constructs. If the majority of inter-item correlations and

 item-to-construct correlations for a given latent construct are significant, the measures achieve convergent validity. If the items tend to correlate

 more with one another within the same construct than with items of other constructs, the measures achieve discriminant validity. The presence

 of violation, however, does not necessarily suggest that the formative construct does not have construct validity, because formative indicators

 do not necessarily have high correlations among them (Petter et al. 2007). If there are violations in the modified MTMM matrix, efforts should

 be made to understand why these violations occurred. The results shown in Table C3 suggest that all inter-item correlations and item-to
 construct correlations for the measures used to assess response extensiveness and response efficiency are significant. They also suggest that
 all items correlate with one another within the same construct much higher than with items of the other construct, with no exception. Therefore,

 we concluded that the two formative constructs, response extensiveness and response efficiency, exhibited adequate convergent and
 discriminant validity.

 Assessing reliability is more difficult with formative measures than with reflective measures and it is not always possible to accomplish it
 (Diamantopoulos and Winklhofer 2001 ; Petter et al. 2007). In a sense, very high reliability can be undesirable for formative constructs because
 excessive multicollinearity among formative indicators can destabilize the model (Petter et al. 2007). To ensure that multicollinearity is not

 a significant issue, we assessed the VIF (variance inflator factor) statistic. If the VIF statistic is greater than 3.3, the conflicting item should

 be removed as long as the overall content validity of the construct measures is not compromised (Diamantopoulos and Siguaw, 2006). The
 VIF estimates for the measures of response extensiveness and response efficiency are shown in Table C4. The results suggest that all indicators

 except for EXT3 have VIF statistics lower than 3.3. The VIF statistic for EXT3 (software team response extensiveness to output data change)

 is slightly higher (3.83) than the criterion. However, removing this indicator appears to compromise the content validity because its counterpart

 item EXT2 (software team response extensiveness to input data change) and EFF3 (software team response efficiency to output data change)

 are integral parts of the data analysis. Thus, removing EXT3 would result in unbalanced content coverage for the response extensiveness and

 response efficiency constructs. The threshold value for VIF (3.3) in this research is much more conservative compared to traditional criteria
 such as 5 or 10. Based on the above considerations, we retained the item EXT3 for data analysis.

 112 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 Table C3. Inter-Item and item-to-Construct Correlation Matrix for Formative indicators

 EXT1 EXT2 EXT3 EXT4 EXT5 EXT6 EXT EFF1 EFF2 EFF3 EFF4 EFF5 EFF6 EFF
 EXT1 1.000
 EXT2 0.624 1.000
 EXT3 0.656 0.786 1.000
 EXT4 0.660 0.696 0.747 1.000
 EXT5 0.592 0.660 0.632 0.661 1.000
 EXT6 0.612 0.617 0.669 0.619 0.580 1.000
 EXT 0.896 0.779 0.839 0.905 0.762 0.710 1.000
 EFF1 -0.362 -0.254 -0.271 -0.309 -0.268 -0.239 -0.365 1.000
 EFF2 -0.254 -0.317 -0.270 -0.322 -0.282 -0.196 -0.325 0.517 1.000
 EFF3 -0.278 -0.309 -0.347 -0.370 -0.278 -0.245 -0.366 0.535 0.681 1.000
 EFF4 -0.294 -0.300 -0.307 -0.396 -0.298 -0.212 -0.380 0.536 0.585 0.625 1.000
 EFF5 -0.248 -0.246 -0.227 -0.275 -0.375 -0.205 -0.306 0.513 0.564 0.519 0.528 1.000
 EFF6 -0.275 -0.256 -0.272 -0.232 -0.212 -0.314 -0.289 0.451 0.437 0.539 0.432 0.479 1.000
 EFF -0.391 -0.334 -0.351 -0.403 -0.339 -0.294 -0.438 0.900 0.670 0.745 0.807 0.665 0.642 1.000

 Note: All correlations are significant at the 0.01 level.

 Table C4. VIF Statistics for Formative Indicators

 Construct

 Software Team
 Responsive

 Extensiveness

 Software Team
 Responsive

 Extensiveness

 Indicator
 EXT1
 EXT2
 EXT3
 EXT4
 EXT5
 EXT6
 EFF1
 EFF2
 EFF3
 EFF4
 EFF5
 EFF6

 0.543
 0.676
 0.723
 0.651
 0.542
 0.527
 0.415
 0.548
 0.591
 0.492
 0.441
 0.361

 VIF
 2.19
 3.09
 3.61
 2.87
 2.18
 2.11
 1.71
 2.21
 2.44
 1.97
 1.79
 1.56

 Note: The VIF statistic for a formative indicator X, is calculated by the following
 formula: VIF (X,) = 1 / (1 - R,2), where R,2 is the coefficient of determination of
 the regression equation X, = a-, ., + a2 2 + a3 X3+...+ akXk + e.

 Appendix D
 Test of a Second-Order PLS Model

 In this second-order model, the software project performance construct is modeled as a second-order latent variable consisting of three first

 order latent variables (on-time completion, on-budget completion, software functionality). Due to the lack of PLS capability to directly test
 second-order models, we separately tested the first-order constructs and then used the computed first-order factor scores as manifest indicators

 MIS Quarterly Vol. 34 No. 1/March 2010 113

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

 Lee & Xia/Software Development Agility

 of the second-order construct (Yi and Davis 2003). Since on-time completion and on-budget completion are modeled as single-indicators, only

 software functionality needs to be tested separately to obtain its factor score.

 As shown in Figure D1, both team response extensiveness (.234, < .01) and team response efficiency (.472, < .01) have a significant positive
 effect on the second-order software project success construct. Team response extensiveness and team response efficiency collectively explain

 17.6 percent of the variance in software project performance. Team autonomy and team diversity collectively explain 14.3 percent of the
 variance in response extensiveness, whereas team autonomy, team diversity, and response extensiveness collectively explain 27.2 percent of
 the variance in response efficiency. The coefficients for other paths remain stable between the second-order and the first-order models,

 suggesting the robustness of the research model.

 fi2 = 0.143

 ft2 = 0.272

 Note: *p < .05; **p < .01

 Figure D1. Results of the Second-Order PLS Model

 114 MIS Quarterly Vol. 34 No. 1/March 2010

This content downloaded from 130.149.253.161 on Mon, 03 Sep 2018 17:03:18 UTC
All use subject to https://about.jstor.org/terms

	Contents
	p. 87
	p. 88
	p. 89
	p. 90
	p. 91
	p. 92
	p. 93
	p. 94
	p. 95
	p. 96
	p. 97
	p. 98
	p. 99
	p. 100
	p. 101
	p. 102
	p. 103
	p. 104
	p. 105
	p. 106
	p. 107
	p. 108
	p. 109
	p. 110
	p. 111
	p. 112
	p. 113
	p. 114

	Issue Table of Contents
	MIS Quarterly, Vol. 34, No. 1 (March 2010) pp. i-xii, 1-212
	Front Matter
	Editor's Comments: Journal Quality and Citations: Common Metrics and Considerations about Their Use [pp. iii-xii]
	Issues and Opinions
	Information Systems Innovation for Environmental Sustainability [pp. 1-21]
	Information Systems and Environmentally Sustainable Development: Energy Informatics and New Directions for the IS Community [pp. 23-38]

	Research Article
	An Empirical Analysis of the Impact of Information Capabilities Design on Business Process Outsourcing Performance [pp. 39-62]
	Chasing the Hottest IT: Effects of Information Technology Fashion on Organizations [pp. 63-85]
	Toward Agile: An Integrated Analysis of Quantitative and Qualitative Field Data on Software Development Agility [pp. 87-114]
	Vital Signs for Virtual Teams: An Empirically Developed Trigger Model for Technology Adaptation Interventions [pp. 115-142]
	Job Characteristics and Job Satisfaction: Understanding the Role of Enterprise Resource Planning System Implementation [pp. 143-161]

	Theory and Review
	The Formation and Value of IT-Enabled Resources: Antecedents and Consequences of Synergistic Relationships [pp. 163-183]

	Research Note: What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com [pp. 185-200]
	Back Matter

