Routledge

3
El
g Taylor &Francis Group

Journal of Management Information Systems

ISSN: 0742-1222 (Print) 1557-928X (Online) Journal homepage: http://www.tandfonline.com/loi/mmis20

Understanding the Drivers of Unethical
Programming Behavior: The Inappropriate Reuse
of Internet-Accessible Code

Manuel Sojer, Oliver Alexy, Sven Kleinknecht & Joachim Henkel

To cite this article: Manuel Sojer, Oliver Alexy, Sven Kleinknecht & Joachim Henkel (2014)
Understanding the Drivers of Unethical Programming Behavior: The Inappropriate Reuse of
Internet-Accessible Code, Journal of Management Information Systems, 31:3, 287-325, DOI:
10.1080/07421222.2014.995563

To link to this article: http://dx.doi.org/10.1080/07421222.2014.995563

ﬁ Published online: 09 Mar 2015.

\J
CJ/ Submit your article to this journal &

||I| Article views: 186

A
& View related articles &'

® View Crossmark data &'

CrossMark

@ Citing articles: 1 View citing articles &

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=mmis20

CDownIoad by: [University of Sussex Library] Date: 03 April 2016, At: 06:04)

http://www.tandfonline.com/action/journalInformation?journalCode=mmis20
http://www.tandfonline.com/loi/mmis20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/07421222.2014.995563
http://dx.doi.org/10.1080/07421222.2014.995563
http://www.tandfonline.com/action/authorSubmission?journalCode=mmis20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=mmis20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/07421222.2014.995563
http://www.tandfonline.com/doi/mlt/10.1080/07421222.2014.995563
http://crossmark.crossref.org/dialog/?doi=10.1080/07421222.2014.995563&domain=pdf&date_stamp=2015-03-09
http://crossmark.crossref.org/dialog/?doi=10.1080/07421222.2014.995563&domain=pdf&date_stamp=2015-03-09
http://www.tandfonline.com/doi/citedby/10.1080/07421222.2014.995563#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/07421222.2014.995563#tabModule

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

Understanding the Drivers of Unethical
Programming Behavior: The Inappropriate
Reuse of Internet-Accessible Code

MANUEL SOJER, OLIVER ALEXY, SVEN KLEINKNECHT, AND
JOACHIM HENKEL

MaNUEL SoJer researches technology and innovation management at TUM School of
Management, Technische Universitdt Miinchen, Germany, where he also received his Ph.
D. He is also the head of strategy and marketing of the business unit power quality at
Maschinenfabrik Reinhausen, a global supplier to the transformer industry. Previously, he
worked at the consulting firm Bain & Company for five years. In the management
domain, his research interests center on profiting from innovation, open source software,
and knowledge reuse. In the field of power engineering, he studies smart grid technologies
and the grid integration of renewable energy. His work has been published in the Journal
of the Association for Information Systems, Communications of the ACM, and the
proceedings of multiple international management and power engineering conferences.

OLivER ALEXY is professor of strategic entrepreneurship at TUM School of
Management, Technische Universitdit Miinchen, Germany, where he was also
awarded his Ph.D. Previously, he worked as a postdoctoral researcher and assistant
professor at Imperial College London. His current research focuses on organizational
design, interorganizational collaboration, and open, distributed models of innovation
in innovation ecosystems. His work has been published in the Academy of
Management Review, Research Policy, Sloan Management Review, and other inter-
national journals. He serves on the editorial review boards of the Academy of
Management Journal, Journal of Management Studies, and IEEE Transactions in
Engineering Management.

SveN KLEINKNECHT is a researcher affiliated with EBS Universitit, Wiesbaden,
Germany and TUM School of Management, Technische Universitit Miinchen,
Germany. His research interests include entrepreneurial behavior and ethical deci-
sion making. After graduating in business administration (majoring in information
systems), he worked for PricewaterhouseCoopers. He has professional experience in
evaluating and designing management controls in IT systems and is a certified
information systems auditor.

JoacHiM HENKEL is a professor of technology and innovation management at TUM
School of Management, Technische Universitdt Miinchen, Germany. His research
focuses on open source software, user innovation, patent infringements, and profit-
ing from innovation, and has been published in, among other journals, Harvard
Business Review, Rand Journal of Economics, Research Policy, and Strategic
Management Journal. He serves on the editorial review boards of Academy of
Management Journal, Industrial and Corporate Change, and Research Policy. He

Journal of Management Information Systems / Winter 2014, Vol. 31, No. 3, pp. 287-325.
Copyright © Taylor & Francis Group, LLC

ISSN 0742-1222 (print) / ISSN 1557-928X (online)

DOI: 10.1080/07421222.2014.995563

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

288 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

has been a visiting scholar at University College London, MIT Sloan School of
Management, and twice at Harvard Business School. He received a degree in
physics from the University of Bonn, a Ph.D. in economics from the University of
Mannheim, and was an assistant professor (Habilitand) at Ludwig-Maximilians-
Universitdt Miinchen. After gaining his Ph.D., he worked for two years with the
consulting firm Bain & Company.

ABSTRACT: Programming is riddled with ethical issues. Although extant literature
explains why individuals in IT would act unethically in many situations, we know
surprisingly little about what causes them to do so during the creative act of
programming. To address this issue, we look at the reuse of Internet-accessible
code: software source code legally available for gratis download from the Internet.
Specifically, we scrutinize the reasons why individuals would unethically reuse
such code by not checking or purposefully violating its accompanying license
obligations, thus risking harm for their employer. By integrating teleological and
deontological ethical judgments into a theory of planned behavior model—using
elements of expected utility, deterrence, and ethical work climate theory—we
construct an original theoretical framework to capture individuals’ decision-making
process leading to the unethical reuse of Internet-accessible code. We test this
framework with a unique survey of 869 professional software developers. Our
findings advance the theoretical and practical understanding of ethical behavior in
information systems. We show that programmers use consequentialist ethical
judgments when carrying out creative tasks and that ethical work climates influ-
ence programmers indirectly through their peers’ judgment of what is appropriate
behavior. For practice, where code reuse promises substantial efficiency and
quality gains, our results highlight that firms can prevent unethical code reuse by
informing developers of its negative consequences, building a work climate that
fosters compliance with laws and professional codes, and making sure that exces-
sive time pressure is avoided.

KEY worDS AND PHRASES: code reuse, ethical behavior, information systems ethics,
Internet-accessible code, open source software, partial least squares, programming
ethics, theory of planned behavior.

ETHICAL BEHAVIOR IS CENTRAL TO MANY ASPECTS OF INFORMATION SYSTEMS (Is), and the
fast-paced evolvement of IS leads to the continuous emergence of new ethical issues
[53, 69]. As a result, the IS context provides a variety of settings in which
individuals can and have to decide what is right and what is wrong, with little
controlling influence other than their own conscience [40, pp. 183ff.]. In particular in
their role as firm employees, it is important that individuals display ethical behavior
and do not place their own personal interest over the welfare of their colleagues or
employer [e.g., 5, 10, 29, 72]. Notably, these concerns transcend mere philosophical
considerations: in day-to-day business, appropriate individual-level behavior is core to
vital company-level issues such as information security [14] and product quality [10].

Accordingly, a broad stream of research has tried to analyze why company
employees would choose to act unethically, focusing on issues such as software

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 289

piracy at work (e.g., [54]), IS abuse (e.g., [31]), intellectual property and privacy
issues (e.g., [70]), and data or identity theft (e.g., [8]). Also, extant research has
looked at unethical behavior with regard to the output of software development
activity, such as knowingly delivering substandard products or exaggerating their
efficacy (e.g., [10]). In short, a plethora of work exists trying to explain why
individuals at work would break rules, misuse their given surroundings, or willfully
consider harming customers with outputs they have produced. At the same time,
work that looks at unethical behavior in the actual activity of programming software
irrespective of the output to be produced is scarce [10].

This is surprising since, as part of the programming activity, employees continu-
ally need to make choices in which they have to weigh their own interests against
those of the corporation. Specifically, programming differs from other IS activities in
that designing and implementing software is an inherently creative endeavor and as
such is not conducive to control. Knuth [39] has likened programming to a creative
activity such as “composing poetry or music.”" It is in the nature of programming
that each new problem necessitates the development of novel code.

In this context, two issues are pivotal. First, prior research has established that a
controlling management style reduces creativity [65]—programmers need autonomy
to be able to produce novel and useful software. However, experimental research has
shown how people carrying out creative tasks are more likely to behave dishonestly
[27]. Second, software development is inherently complex, rendering the control of
development practices almost impossible. Rather, it is individuals’ choice to behave
ethically and act in a way that prevents harm to their employer (see, e.g., [10, 72]).
Yet, combined with high degrees of autonomy, the complexity of software projects
creates a situation in which programmers may also justify or hide unethical behavior.

From a theoretical perspective, this argument implies that programming substantially
differs from other areas of IS regarding the role of ethical decision making—current
knowledge about individual-level ethical decision making cannot simply be “copied”
to this setting. Accordingly, in this paper, we strive to address the question, What
drives unethical programming behavior by individuals? Notably, answering this ques-
tion matters not only for theory but also for practice, because managers need to gain
insight into whether and how they may intervene to break the link between creativity
and dishonesty, while keeping the link to high-quality outputs intact.

To tackle this issue, we build on the rich tradition of ethical studies in the IS
domain. We construct an original framework joining different theoretical streams in
a research model built on the theory of planned behavior [1]. Similar to Bulgurcu
et al. [14], we capture teleological perspectives (i.e., rule-based ethical consideration
of actions) by drawing on expected utility theory (e.g., [23, 63]) and deterrence
theory [21]. Adding a deontological perspective (i.e., basing ethical judgments on
actions’ consequences) through ethical work climate theory (e.g., [80]), our frame-
work allows us to study individuals’ attitudes, perceived social norms, behavioral
control, and intention toward unethical programming behavior.

We apply this framework to a particularly salient situation in which developers
may choose to take “unethical shortcuts”: the reuse of software code. The recent

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

290 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

emergence of code available as a gratis (free) download from the Internet, particu-
larly open source software (OSS; e.g., [30]), has further increased potential benefits
of code reuse [e.g., 25]. Notably, such “Internet-accessible code” (hereafter simply
IAC) is often reused by individual professional software developers in ad hoc
fashion when these developers—on their own and typically without telling anyone
—employ it as a shortcut in their work (e.g., [52]). Levi and Woodard [44, p. 8] even
claimed that such ad hoc reuse of IAC has become “standard practice for many
programmers.”

However, IAC usually has a license attached to it, which may put legal limits on
how the software can be used. Because appropriately taking license obligations into
account may be an annoying burden for developers, they may sometimes not
thoroughly check for the obligations that come with reuse, or even intentionally
ignore such obligations [67]. As a result, although IAC reuse may solve program-
ming problems, such reuse without regard for license obligations may entail negative
long-term consequences for firms that may far outweigh any individual-level and
short-term firm-level benefits.”

To operationalize our research question, we look at factors that make software
developers more or less likely to disregard potential license obligations when reusing
IAC. Following a prestudy consisting of thirty-two interviews with experts on this
topic, we survey 869 professional software developers using a vignette study
approach [26] that contains multiple scenarios of ad hoc IAC reuse.
Simultaneously, we solicit individual software developers’ opinions and motivations
while including potential controls for problems of common methods bias [58].

Our results underline the importance of teleological and deontological ethical
judgments in unethical code reuse. We find that both judgments affect intentions.
From a deontological perspective, elements of the ethical work climate touching on
larger professional or legal codes affect individuals’ intention toward the unethical
reuse of IAC indirectly, through subjective norms. From a teleological view, benefit
considerations derived from expected utility theory and deterrence theory predict
attitude, with deterrence showing higher relative coefficient values and levels of
significance, and significant differences between the scenarios we develop.

Taken together, the elements of our research model allow us to capture individual-
level decision-making processes behind the unethical reuse of IAC. In doing so, we
make three contributions to the IS literature. First, we look at how individuals arrive
at an evaluation of unethical behavior. We note that in this context, contrary to
adoption decisions (e.g., [78]) or ethical decisions in less creative contexts (e.g.,
[56]), cost considerations have stronger effects than benefit considerations. We also
find that individuals’ rationale differs between different types of reuse, raising a note
of caution regarding the comparability of ethics studies applying diverse scenarios.
Second, we extend work studying the impact of ethical work climates and codes on
individual behavior (e.g., [48, 75, 77]) by highlighting the prevalent importance of
institutions on individual behavior. At the same time, we explain past mixed results
[31, 37, 57] by explicating the indirect nature of this effect. Finally, we extend work
on IS ethics by elaborating on earlier studies with more restricted theoretical breadth

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 291

(e.g., [31]) and point out the pivotal importance of studying issues and accounts of
unethical programming behavior, such as reuse of IAC or of knowledge more
generally.

Theory and Hypotheses

Internet-Accessible Code Reuse as an Ethical Issue of Employee’s
Programming Activities

SINCE MASON’S [49] SEMINAL CONTRIBUTION in which he established the manifold ethical
issues in the IS space, a stream of scholarly work has emerged to investigate and
explain unethical behavior in the IS context. A clear majority of these studies focus on
questions of ethics with regard to the acquisition of software, the use and abuse of
existing software programs and IS infrastructures, the production of software that may
incorporate morally questionable features, or the provision of software tools that do
not meet promised or agreed-upon requirements (e.g., [8, 53, 54, 56, 57]). In many of
these studies, the subject at focus is the individual employee, with researchers trying to
understand what motivates unethical behavior in these contexts.

Although these efforts are certainly helpful in elucidating ethical issues in software
development, they do not look explicitly at actual coding activities. Yet, this is a
crucial area in which individuals continuously need to weigh their own interest
against that of their employer and their peers [10]. In their daily work, programmers
often have the opportunity to take shortcuts that are to their own benefit but may end
up harming others, such as their employer, their peers, or customers. For example,
individuals knowing the criteria against which their code will be checked may
reduce their effort levels regarding other elements of their program, trade in quality
against speed of completion [10], cut corners during testing, and thus ship poten-
tially unreliable software [5]. More generally, research has shown how individuals in
creative contexts can and will behave more dishonestly than in other settings [27]. It
is thus questionable whether the insights on ethical decision making in IS that we
have gained from other, less creative settings such as software piracy or illegal
downloading may also apply to programming.

To shed light on this issue, we look at one specific element of the programming
process. We argue that the reuse of existing software code is an issue in software
development that is particularly fraught with ethical difficulties. Generally, reuse of
existing software code is crucial for firms to increase the effectiveness, efficiency,
and quality of their software development, improve time-to-market, and reduce
development and maintenance costs (e.g., [38, 42, 45]). In particular, the increas-
ingly large body of IAC available for download at no cost may be leveraged in
commercial software development. When such IAC is proven and thoroughly tested,
its reuse helps developers to produce artifacts of higher quality and better maintain-
ability, often in much less time, resulting in considerable benefits to firms (e.g.,

[25D.

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

292 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

However, despite typically being available gratis on the Internet, most IAC is not
in the public domain. By putting code under an OSS or some other license, the
author waives part of the rights granted under copyright, while binding the receiver
of the code to the terms of the license. As such, reuse of IAC is still governed by
copyright, and therefore reusing such code requires adherence to its license terms
and any obligations these may contain (e.g., [61]). Noncompliance with these rules
is not an option, because their enforcement can have serious economic and reputa-
tional consequences (e.g., [52, 61]).

As with other forms of unethical programming behavior (e.g., [10]), the literature only
acknowledges the existence of unethical IAC reuse by individuals; it does not explain
the internal and external drivers of such behavior. Clearly, when contemplating the
(potentially unethical) reuse of IAC, programmers are faced with a decision that includes
reconciliation of competing interests, and different ways of thinking about the ethical
aspects of this decision may result in divergent evaluations. Although unlicensed use of
IAC is clearly unethical from a rule-based, deontological perspective, a teleological
view rests on weighing the different consequences of usage. IAC usage has positive
effects on some stakeholders—on the company, for example, by reducing effort, and on
the users, by allowing faster completion and less resource expenditure. Should these
positive consequences outweigh potential negative effects, the net positive effects would
excuse a deontologically unethical IAC reuse. In turn, programmers have to weigh not
only the consequences of their decision but also potentially competing evaluations
arising from judgments based on consequentialist and deontologist moral theories.

Modeling Individual-Level Unethical Reuse Behavior

We construct an original theoretical framework that aims at predicting individuals’
intention to engage in the unethical reuse of IAC. To anchor our design, we model
the individual’s decision according to the theory of planned behavior (TPB) [1], one
of the most frequently employed theoretical models to investigate (un)ethical beha-
vior in business contexts. Specifically, ethical decision making and its modeling
using the TPB has a long tradition in the IS literature (e.g., [8]), including decision
contexts such as software copying (e.g., [56]) or compliance in IT (e.g., [14]). The
TPB has also been used extensively in ethical contexts beyond IS, such as metal
finishing [24] and accounting [13]. An alternative model of ethical decision making
has been presented by Hunt and Vittel [34], who also explicitly included a construct,
“ethical judgment,” influenced by teleological and deontological considerations.
However, even though the TPB may not capture ethical judgments directly, it does
so indirectly through attitude and subjective norms. Deontological aspects are
incorporated into attitude and subjective norms, with personal values influencing
attitude, and rules of behavior based on general societal or issue-specific beliefs
shaping subjective norms. Attitude captures the ethical evaluation of the behavior
(ethical appraisal of consequences and personal-values-based assessment of the
action) weighed against the resulting personal gains or losses resulting, thus also

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

%6
&4 /\/

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 293

measuring teleological aspects [82]. We chose to use the TPB because its applic-
ability has been verified by prior studies in comparable scenarios and empirically.
These studies also found the TPB to exhibit higher explanatory power and model fit
[82] than the Hunt-Vittel model. Also, from an ethical perspective, by using a TPB-
based model to combine theories that explain ethical decision making, researchers
may design original frameworks that remain representative of larger theories of
moral development, thinking, and action [40, 54].

We model the individual-level ethical decision-making process for IAC reuse,
including the weighing of different ethical and personal considerations. Within a
TPB-based framework, attitudes capture the teleological or consequentialist aspects
of ethical decision making, in contrast to deontological characteristics, which mainly
influence social norms. This framework (see Figure 1) features three aspects that
render it clearly distinct from extant research.

First, we draw on ethical work climate theory [80] to provide a deontological
perspective on subjective norms. We tie into the debate on the effect of ethical
codes on behavior, which has yielded mixed results [31, 37, 57]. We maintain that
these mixed results may be explained by inconsistencies in how elements fostering
an ethical work climate are modeled and present arguments that extend current
thinking of a direct effect of ethical work climates on intention to an indirect effect
via perceived subjective norms. Second, to introduce a teleological logic, we
analyze the consequences of unethical IAC reuse. To do so, we build on
Bulgurcu et al.’s [14] work on information security noncompliance to identify

Usefulness Hsa (+)
of Internet-
accessible code

oS

Severity of Gy
time D

pressure x,"

Ethical work

climate: Law
& code

Cost of
compliance

Hda ()

Subjective

“

S norm
Punishment <
severity
(firm) 2
‘é’ .
< Ethical work
Punishment climate:
severity Rules
(developer)

Perceived
behavioral
control

Punishment
certainty

Figure 1. Research Model

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

294 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

relevant consequences of unethical behavior.® Following these authors, we rely on
expected utility theory and deterrence theory to integrate both positive and nega-
tive effects of information security activities. We know from past IS work applying
deterrence theory that the fear of punishment stipulates a more negative attitude
toward unethical behavior [15, 56]. At the same time, individuals weigh this
potential downside against the benefits they hope to achieve, as predicted by
expected utility theory [21]. We compare the relative effect of perceived advan-
tages and disadvantages, an approach common to “positive” adoption decision
models such as the technology acceptance model (e.g., [78]). Third, the joint
consideration of the foregoing theoretical perspectives is novel. Specifically, our
simultaneous considerations of other determinants of unethical behavior should
allow us to more precisely establish the effect of ethics codes and other elements
of the ethical work climate to provide a more elaborate understanding of what
drives (un)ethical behavior in IS.

Predicting Intention

The TPB postulates that behavioral intent is driven by individual attitude toward a
behavior, perception of peers’ opinion about the behavior (termed ‘“‘subjective
norm”), and perceived control over the behavior, which captures both the ability
to engage in a behavior as well as the degree of control over its actual enactment.
The relative importance of constructs influencing intention is expected to vary with
regard to the behavior at stake [1, 9]. As explained earlier, a wide array of literature
in various domains has shown the validity of the TPB in ethical decision making.
Nonetheless, as a baseline for our research model, we contextualize the three base-
line relationships posited by the TPB.

First, we expect that programmer attitude, that is, the degree to which a program-
mer evaluates the reuse of IAC as favorable or unfavorable, influences the intention
to engage in this behavior. Past studies based on the TPB have shown attitude to be
the best predictor of intention [1]. This includes research on IS ethics on issues such
as software and digital media piracy (e.g., [20, 56]), and also on related topics like
information security compliance [14]. Accordingly, we expect that individuals’
attitude toward unethical IAC reuse will also drive their intent to do so. Second,
we include subjective norms representing the perceived social pressure to engage or
not to engage in a certain behavior [1]. Because it is likely that peers’ perceived
levels of approval influence individuals’ decision making regarding unethical IAC
reuse, we expect subjective norms to have an impact on intentions [20]: in line with
studies on software piracy [56], we expect higher (lower) levels of perceived
subjective norm to positively (negatively) affect individuals’ intent to reuse IAC
unethically. Third, perceived behavioral control reflects the ease of reusing IAC, as
perceived by the programmer, including past experiences and anticipated impedi-
ments [1]. This includes the perception of control over the reuse situation, such as
the ability to copy IAC and to reuse it [20, 72]. A review of the literature on IS ethics

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 295

and related topics [14, 56] shows that perceived behavioral control drives behavioral
intent in most settings. Accordingly, for IAC reuse as well, we also expect that the
absence of actual and perceived obstacles should result in increased IAC reuse.

Hypothesis 1: Developers’ attitude toward unethical IAC reuse positively affects
their intention to engage in such behavior.

Hypothesis 2: Developers’ subjective norm concerning unethical IAC reuse
positively affects their intention to engage in such behavior.

Hypothesis 3: Developers’ perceived behavioral control regarding unethical
IAC reuse positively affects their intention to engage in such behavior.

Predicting Subjective Norm: The Role of an Ethical Work Climate

When ethical decisions are at stake, the wider context in which these are embedded
also influences decision makers [75, 81]. Organizational ethics research has found
support for the relationship between the ethical climate within a firm and employees’
ethical behavior (e.g., [77]). Victor and Cullen [80, p. 101] defined ethical work
climate as “the prevailing perceptions of typical organizational practices and proce-
dures that have ethical content.” Although ethical work climate is a macro-level
construct [81] strongly influenced by written codes of ethics [57], its perception by
individuals influences “the types of ethical conflicts considered, the process by which
such conflicts are resolved, and the characteristics of their resolution” [79, p. 55].
Two aspects of an ethical work climate are particularly appropriate for inclusion in
our research model and allow us to follow Harrington [31] in distinguishing whether
its influence on ethical behavior originates from outside or from within a focal
organization. First, the Jaw and code dimension reflects the importance of compli-
ance with laws and professional codes of conduct originating from outside the firm.
It is thus evidence of the strength of intrafirm adherence to institutional norms e.g.,
[55]. Given that obligations from IAC reuse result from legal instruments such as
copyright, and that respect for intellectual property is part of IS codes of conduct
(e.g., [5]), developers in firms in which such institutional norms and regulations are
held in higher regard should have a lower intention to reuse IAC unethically.
Second, the rules dimension reflects firm-specific, internal policies, procedures,
and norms [81]. Opposite to the law and code dimension, these aspects of an ethical
work climate may be less institutionalized as they either cannot be or are unlikely to
be communicated explicitly during a developer’s initial socialization, such as during
university training (e.g., [35, 55]). Nonetheless, given that some firms have rules of
how to deal with IAC (including reuse), socialization may happen once developers
join these firms. In turn, developers in firms in which compliance with internal rules
is more pronounced should have a lower intention to engage in unethical IAC reuse.
Tetlock [71, p. 298], however, proposed that “both individuals and small groups of
individuals are constrained by the norms, procedures, and resources of the institu-
tions in which they live and work,” suggesting that ethical work climates will not

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

296 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

influence individuals’ behavioral intention directly, but rather the subjective norm
individuals perceive. Simply put, ethical work climates may guide individuals in
developing their evaluation of what others think is acceptable behavior. Thus, we
posit an indirect effect of ethical work climates on intention, via subjective norm:

Hypothesis 4a: A firm s ethical work climate perceived to emphasize compliance
with laws and codes negatively affects developers’ level of subjective norms
supporting unethical IAC reuse.

Hypothesis 4b: A firm s ethical work climate perceived to emphasize compliance
with firm rules negatively affects developers’ level of subjective norms support-
ing unethical IAC reuse.

Predicting Attitude: Cost-Benefit Estimations and the Role of
Punishment

From a strictly consequentialist perspective, developers should favor the unethical reuse of
IAC if they consider its net benefit to be greater than that of any alternative, such as
“correct” reuse or writing the code themselves. This is in line with rationality-based
assessments of alternative courses of action. For example, in their study on IS compliance,
Bulgurcu et al. [14] showed that a cost-benefit analysis is an immediate antecedent of
attitude. Notably, however, compliance differs from ethical decision making in that its
rules are based on company objectives and as such are disconnected from independent
individual-level moral considerations. Thus, ethical decision making and compliance are
mainly similar with respect to specific outcomes, namely that violating a company rule—
irrespective of how it came into being—is unethical behavior.

Like Bulgurcu et al. [14], we employ expected utility theory [23, 63] to account
for perceived benefits and employ deterrence theory [21, 69] to include counter-
vailing cost factors. However, given that we expect the behavior we study to
theoretically and empirically vary from their phenomenon of interest, we differ in
the choice of aspects used to model individuals’ cost-benefit considerations in order
to reflect the specific circumstances of software development. Specifically, we
include the general usefulness of IAC, its specific usefulness in mitigating time
pressure, and the avoidance of compliance cost as benefits. In turn, costs are
modeled by punishment certainty and severity on a personal and company level.
We derive these antecedents based on an extensive review of literature and have
corroborated our choice in a series of thirty-two semistructured interviews with
development professionals, for example, developers active on the web-based open
source development platform SourceForge.net.

Usefulness of Internet-Accessible Code

IAC reuse can ease developers’ jobs because it allows them to solve technical
problems they could not solve themselves, or to develop (better) software in less

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 297

time (e.g., [25]). Perceptions of usefulness differ between programmers and depend
on programming style and language, complexity of the problem at hand, and prior
experience with IAC, such as previous involvement in OSS development. In this
context, Sojer and Henkel showed [66] that anticipated individual-level benefits of
code reuse are the most potent indicators of actual reuse behavior in OSS projects.
The higher professional developers value the usefulness of IAC in general, the more
they should also be inclined to make use of this potential shortcut for their work. In
turn, we argue that the higher the value individuals should generate from taking such
a shortcut, the more inclined they should be to disregard potentially associated
ethical concerns (see also [14, 56]):

Hypothesis 5a: The perceived usefulness of IAC positively affects developers’
attitude toward unethical IAC reuse.

Mitigation of Time Pressure

Efficiency gains through IAC reuse may in particular mean faster completion of a
project and the meeting of deadlines. Generally, research on software quality shows
that developers under time pressure tend to take shortcuts in order to avoid missing
deadlines (e.g., [12]). Such shortcuts are “decisions made in private that are moti-
vated by a desire to stay on schedule, but are not in the best interests of the project”
[7, p. 195]. It seems likely that unethical IAC reuse is one such shortcut that
developers employ and then “hope for the best [and] leave potential sources of
difficulty unexplored” [7, p. 195]. The willingness to consider using such an enticing
shortcut can be exacerbated by changes in staffing or shifts in responsibilities after
reaching project goals. In a theoretical model, Austin [7] showed that developers
who perceive more severe consequences from missing deadlines, such as not being
considered for promotions or pay raises, are more likely to take shortcuts and ignore
the negative issues that might ensue. Accordingly, we posit the following
hypothesis:

Hypothesis 5b: The perceived severity of time pressure positively affects devel-
opers’ attitude toward unethical IAC reuse.

Avoidance of the Cost of Compliance with License Obligations

Compliance with license obligations may represent a work impediment to profes-
sional software developers [14]. A benefit specific to unethical IAC reuse is that it
helps to avoid costs of compliance, which can be broken down into two components:
investigating which obligations come with the IAC under consideration, and ensur-
ing that these obligations are accounted for properly. Developers will in general hold
different perceptions with regard to these two cost components. For instance,
developers who have received training on the issue of software licenses will find
it less costly to explore the obligations linked to a specific piece of code [67], and

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

298 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

thus be less likely to engage in unethical IAC reuse. Oppositely, developers lacking
such knowledge face higher costs of compliance, which they can avoid by choosing
to reuse the software unethically. Another factor is the legal language of the license
itself. Although a lot of effort has been put into standardization of OSS licenses,
subtle differences with potentially large practical implications might be difficult to
comprehend for a legally untrained programmer. The same discrepancy can be
observed in the costs of ensuring that identified obligations are accounted for.
Here, developers typically have to engage with others in their firm (often their
supervisors) to determine whether and how these obligations can be fulfilled. If
developers expect high costs in the form of lengthy and difficult discussions with
their firm, combined with a high likelihood of a negative outcome, they might well
consider it attractive to avoid this step, reuse the code right away, and disregard
those obligations they are aware of. We thus posit the next hypothesis:

Hypothesis 5c: Higher perceived costs of compliance positively affects devel-
opers’ attitude toward unethical IAC reuse.

Punishment Severity (Firm)

Counteracting the above benefits is the potential punishment that can result for
individual software developers and/or their employers from disregarding license
obligations. The related literature distinguishes punishment severity and punishment
certainty (e.g., [74]), each of which should exert a negative effect on levels of
unethical or illegal behavior [21]. This effect has been repeatedly confirmed in the IS
domain (e.g., [56, 69]). For example, Peace and colleagues [56] clearly established a
link between both punishment severity and punishment certainty and the intention of
employees to pirate software at their workplace.

In our setting, two different types of punishment severity need to be distinguished:
severity for the firm [73] and severity for the individual developer [56]. No such
distinction needs to be made for punishment certainty. Typically, people outside the
developer’s firm have access only to the binary code of the software, and thus they
cannot identify individual developers committing unethical IAC reuse. The like-
lihood that an individual will be able to violate licenses and not be punished for it,
even when the employer gets caught, will depend on individual programming skills
and firm-level code tracking systems. These two factors are sufficiently captured by
the perceived behavioral control dimension of the TPB. In additional robustness
checks, we also controlled for, but did not find, significant relationships between
punishment severity, punishment certainty, and perceived behavioral control.
Similarly, we also controlled for, but did not find, an interaction effect between
punishment severity and certainty. Thus, we look at how punishment severity for the
firm, punishment severity for the individual, and punishment certainty will affect
individual-level attitude toward unethical IAC reuse. Looking first at punishment
severity for the firm, there should be developers who know and fear the potential
legal, economic, and reputational consequences [10, 67] their employers might face

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 299

from unethical IAC reuse. Such developers should accordingly hold a more negative
view of unethical IAC reuse [32]. In contrast, developers who perceive the potential
consequences for their employers as less severe or do not know about them should
hold a more positive view. Accordingly, we posit the following hypothesis:

Hypothesis 6a: Perceived punishment severity for their employer negatively
affects developers’ attitude toward unethical IAC reuse.

Punishment Severity (Developer)

Unethical IAC reuse may further result in direct punishment of the employee in the
form of financial or legal sanctions and potential termination of employment. In fact,
firms are increasingly designing explicit rules on reuse of IAC, some banning its
reuse altogether and some only allowing reuse of specific types, with these rules also
specifying punishments for developers who do not comply [67]. Individual punish-
ments also affect the programmer directly—economically by firing, delayed promo-
tions, and withholding of bonuses and socially through the stigma of unemployment
or by assigning blame publicly. Developers who are likely to face more severe
individual punishments should hold a less positive attitude toward IAC reuse dis-
regarding potential license obligations (see [10, 21]):

Hypothesis 6b: Perceived punishment severity for themselves negatively affects
developers’ attitude toward unethical IAC reuse.

Punishment Certainty

Punishment certainty captures the likelihood that someone outside the developer’s
firm finds that the firm’s software contains IAC but does not account for license
obligations. Subsequently, it will be at the firm’s discretion to identify the individual
developer responsible. It is generally assumed that “determining whether [IAC] is
present in a corporation’s code base is a difficult task to perform accurately” [52,
p. 8]. Yet, organizations such as gpl-violations.org have recently been founded to
actively pursue the violation of obligations from reused IAC by commercial firms.
Developers who are more aware of these developments should perceive a higher
punishment certainty and consequently be less inclined to behave unethically [15].
Beyond that, various other factors might matter, such as the programming language
employed (as the binary code created by some programming languages can be
analyzed more easily than that of others) or the deployment mode of the software
(e.g., embedded software vs. standalone software, or few customers vs. many
customers), all of which can be judged by individual developers.

Hypothesis 6¢: Perceived punishment certainty negatively affects developers’
attitude toward unethical IAC reuse.

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

300 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

Data and Methods

WE TESTED OUR RESEARCH MODEL by deploying a multimethod research design that
follows best practice guidelines (e.g., [4, 11]). Primarily, we drew from a survey of
869 professional software developers (see also [67]). We also relied extensively on a
qualitative prestudy comprising thirty-two interviews with an average duration of
fifty minutes with industry experts in the field of IAC reuse. To gain insights into
commercial software development and code reuse issues, we interviewed twelve
OSS developers, seven consultants advising on code reuse, six corporate software
developers, three lawyers specializing in source code licensing, and three investment
professionals who include review of code licensing in their preinvestment due
diligence. Based on qualitative content analysis [50], these interviews deepened
our understanding of IAC reuse and its ethical aspects and allowed us to create
more meaningful survey questions. Finally, before conducting the actual survey, we
pretested the questionnaire extensively. First, it was reviewed by four scholars
strongly familiar with the topic. After that, 113 developers from the survey popula-
tion took part in two rounds of piloting to assess the quality of the survey with
respect to its content, scope, and language. In drafting the final questionnaire (see
Appendix A), we took into account the pretest results and feedback from the pilot
tests and fellow researchers.

Questionnaire Development and Considerations of Common Methods
Bias

Aided by our prestudy, we tried to develop a survey instrument capable of account-
ing for issues of common methods bias that should be particularly prevalent in a
study focused on ethics. Here, we follow the recommendations by Podsakoff et al.
[58] to minimize underlying biases, caused by, for example, apprehension or social
desirability, through survey design and administration.

First, to elicit realistic decision making and to create psychological distance for the
survey participants, we applied Fredrickson’s [26] scenario method. To provide
survey participants with real-life and precisely formulated scenarios about the
unethical reuse of IAC [76], we devised two different vignettes to which participants
were randomly assigned. We started from Anderson et al.’s [5] nine scenarios
illustrating situations calling for ethical decision making in the 1992 Association
for Computing Machinery code of conduct. In one of these, they describe a devel-
oper who—under time pressure and stuck with technical problems—reuses existing
code unethically. Using our insights from the qualitative prestudy, we adapted this
scenario to reflect the situation of a developer reusing IAC. These modified scenar-
ios (shown in Appendix B) present a developer named Joe who is under time
pressure to complete his module of a development project and unsure how to
implement a certain piece of functionality specified for the module. Too resolve
this situation, Joe reuses IAC in an ad hoc fashion. Specifically, in scenario 1, Joe

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 301

reuses a snippet for which he does not check thoroughly for license obligations. In
scenario 2, we vary the type of unethical behavior that Joe exhibits—in reusing a
snippet, he checks for the associated license obligations, but purposefully ignores
them. The nature of this transgression may be seen as more severe, as Joe is
deliberately putting his own interest over that of the company [40, 54]. By compar-
ing the results of scenario 1 with those of scenario 2, we might thus gain additional
insight into whether and how this contingency affects individuals’ unethical IAC
reuse intentions. In a similar vein, as a robustness check, we developed an alter-
native version of scenario 1 in which we vary the type of code that is reused—
instead of a small snippet, Joe reuses a software component.

Second, whenever possible, we relied on survey items validated in earlier studies
on unethical behavior—preferably in the IS context and with TPB-based models
(e.g., [19, 46, 56])—or slightly adapted them. For the ethical work climate con-
structs, we employed the original items by Victor and Cullen [80]. No suitable items
could be identified for usefulness of IAC, cost of compliance, or punishment
certainty. We thus developed new ones based on existing literature on IAC reuse
and the information gathered during our interviews and pilot study. All survey items
are rated on a seven-point Likert-scale ranging from strongly disagree to strongly
agree. To further reduce social desirability effects, we emphasized the completely
anonymous nature of our survey and ensured that all survey items were presented in
a nonthreatening, neutral tone. Finally, we used the feedback from our survey pilot
and fellow researchers to further improve the wording of our questions. We also
attempted to empirically control for common method variance, as described below.

Sample and Data Collection

Because professional software developers from only one or a few firms might not be
representative in their beliefs and opinions, our study required a broad sample. To
accommodate this need, we chose participants in newsgroups for our survey, with
the assumption that a substantial share of the participants in this communication
channel would also develop software for a living. To construct our survey popula-
tion, we identified 528 newsgroups dealing with the topic of software development.
In July 2009, we extracted e-mail addresses of those 38,212 individuals who had
been active in the previous twelve months (Figure 2). We eliminated 13,525
addresses due to issues such as duplication or because they clearly did not refer to
potential software developers. Of the remaining 24,687 addresses, 1,212 were
utilized for our pilot studies and 23,475 formed our final survey sample. The survey
was conducted in fall 2009, when we randomly selected 14,000 individuals from the
population and contacted them via e-mail. Because 2,227 invitations did not reach
their recipients, the 1,133 valid responses we received correspond to a 9.9 percent
response rate, which is typical for Internet surveys [18]. The high number of
undelivered invitations reflects the significant share of newsgroup participants who
provide fake or temporary contact information in their profiles. A nonresponse

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

302 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

Participants in software development newsgroups

100,000 93,541

E.g., clearly invalid e-mail
address, duplication of other
profile, participant clearly not
active in software
development

80,000

60,000

40,000 38,212
55,329
24,687 23,475
20,000 —13,525 1212
0 = =
= v T € 8 == B q 5
588 EaES S8%8 5% o =2 c8 5E
0% 28,8 TE o S 3 S8 23 23
£ 2 SHE S~ 50285 S0 3 2=9 © B >3
g o €925 55852 =] S92 3 283
g 5582 Fes< T 5= f=) Sy} Q
o g5 © o a5 C = o=
£ a’s oo
Q

Figure 2. Construction of Survey Population

analysis that compares early to late respondents [6] yielded no indication of bias in
the items used in the research model.

Descriptive Statistics

As expected, the majority of respondents to our survey were professional software
developers (77 percent). We relied solely on these 869 individuals for our analysis
(see Table 1). Of these, 316 completed the questionnaire containing scenario 1 and
297 the one containing scenario 2, and 256 individuals were assigned the robustness
check scenario. On average, respondents were 35.6 years old, male (98 percent), and
had 9.7 years of programming experience. When self-assessing their software
development skills, nearly three-quarters of the developers considered themselves
to be above average, and 23 percent even thought of themselves as “excellent.”
More than half of our sample (56 percent) had participated in OSS projects in the
past. Finally, only about one-third of the respondents worked in firms with a policy
addressing IAC reuse, suggesting—in accordance with the findings from our pre-
study—that many firms still do not address the potential risks of ad hoc IAC reuse
by individual developers. We controlled for the presence of such policies in addi-
tional robustness checks.

Results

WE TESTED FOR EACH SCENARIO IN OUR RESEARCH MODEL individually using partial least
squares (PLS), employing the software SmartPLS [60]. PLS is one of the second-
generation multivariate analysis techniques that estimate both measurement and
structural models simultaneously in optimal fashion [16]. Given the medium-sized
samples for all scenarios and lack of a normal distribution in most of our variables,
PLS seemed better suited than the more traditional LISREL approach [36]. All

303

‘698 = N 910N
9l ON
g9 ON 8 SOA

Ge SOA 600g Ul Jadojonap aremyos |euoissajold se BuIop
Aoljod asnal apod 9|gisseooe-1ouliaiu| ue sey Jakoldwg 144 ON
€2 1us||80x3 9G SOA

0S obelone anoqy syoeloid SSO ul @ousadxe Juswdojaasp alemyos
22 abelony LE jusjeainba 10 "qyd
¥ abelane mojeg 6E waleAlinba 1o ayenpeln
L olseq 8¢ wejeainba Jo ayenpelbispun
S|IYS WwawdojoAsp 81eM}OS JO JUBWSSISSE-}|9S cl uoleonpa AjsiaAlun-uoN

2l 3l04 J8Y10 uoieonpa Jo |99 1saybiH
! SEIET] Gl (MoY) pliom jo isal pue eisy
Z Jadojanep/iaubisep aseqereq €S adoing
Z 1sAjeue ssauisng/siuswaiinbai/swalsAs v BOUBWY YN0
v Jabeuew 109loig 8¢ Bolswy YUON

82 1081yoJe waishAs/aiemyos aouapisay
1S Jawweiboid 2 alewa
8|04 Juswdojanap 81emyos 86 aleN

2l sleah +0g Jopusn)
YA sieah 61-G| 4! +0S
Iord sieah y1—01 8l 67—0%
Ge sieak -G Ge 6£-0¢
62 sieaf p—| ve 62-02
4 Jeah | uey sson ! 611

(s1eah /6 :ueaw) Jadojonap alemyos [euoissajoid se aousuadxy (s1eah 9'Gg :uesw) aby

93eIu0I0 g 93eIu0Io

syjuopuodsay] jo somyderSowraq 1 9[qeL,

9102 1UdV £0 70:90 T [Afeiq1 xassns Jo Alsiealun] Ag pepeojumoq

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

304 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

constructs were modeled as reflective measures. To estimate the significance of path
coefficients, we relied on a bootstrapping procedure with 200 samples [33].

Measurement Model Assessment

Evaluating measurement models in PLS requires an examination of their composite
reliability, indicator reliability, convergent validity, and discriminant validity [11, 16,
33]. As shown in Table 2, all constructs meet the composite reliability threshold of
0.7, and nearly all items exceed the indicator reliability cutoff value of 0.7. In
scenarios 1 and 2, the items PBC2 and PBC4 are slightly below the required
value of 0.7. The same is true for item CERT2 in scenario 2. However, the items
are retained because the overall constructs exceed the composite reliability threshold
of 0.7 in all cases. To ensure convergent validity, that is, establishing that a construct
is unidimensional, the average variance extracted (AVE) should be above 0.5. This
criterion is met by all constructs in all scenarios (see Table 2). Finally, the results
shown in Table 3 confirm the discriminant validity of our constructs, as all of them
fulfill the Fornell-Larcker criterion in all three scenarios.

Structural Model Assessment

Following Chin [16] and Henseler et al. [33], we evaluated each model’s predictive
power through the R? values of its ultimate dependent variable (intention) and each
model’s predictive relevance through the Stone-Geisser criterion (Q?). The R* values
for the ultimate dependent variable are 0.417 for scenario 1 and 0.607 for scenario 2
(see Figures 3 and 4), indicating satisfactory explanatory power of our model, and
the respective Q* values (0.333 and 0.507) suggest acceptable predictive relevance.
This increase in values suggests that our research model works better when the
scenario describes an actual rather than a potential ethical transgression.

Addressing our baseline hypotheses, attitude and subjective norm significantly
drive intention, confirming H1 and H2, with attitude exhibiting a stronger effect than
subjective norm. H3, which suggested a positive effect of perceived behavioral
control, is not supported.

Of the hypotheses on ethical work climates, we find strong support for H4a, which
posited an indirect effect of ethical work climates with respect to compliance with
laws and codes on intent, via subjective norms. Oppositely, we have to reject H4b,
which argued for an indirect effect of firm-internal rules. We find no direct effects of
ethical work climates on intent in either case; additional Sobel tests with regard to
H4a produce results on a 5 percent level of significance.

Regarding drivers of attitude, in line with H5b, we find that developers who perceive
the consequences of missed deadlines as more severe exhibit a more positive attitude
toward unethical IAC reuse. Also, perceived punishment severity for their firm (H6a) or
for themselves (H6b) leads to a more negative attitude. Hypotheses 5a and 5c are
supported only in scenario 1, in which usefulness (H5a) and the avoidance of the cost

305

(sanunuoo)

0.0 161 6L Y 890 981 81's 090 G/} (K} ¥0dd
080 202 [N 9,0 861 Y'Y 180 0072 Y'Y £09d
¥L0 LL'2 99'e 690 Gl¢ €ee 090 ¥le e (4) 20ad
060 812 (0[5 /80 812 IS ¥8°0 GI¢ 2Ly 104d
290 /80 /S0 +80 250 180 |0J)u0D [BIOIABYSQ POAISOId
/80 /91 687 180 2L} 28y 880 €8} Sy (H) ¥NS
980 €1 £ee /80 281 Sy'e 980 8’1 2se ENS
€80 /91 0S¢ G680 V9l 8L 980 L'} 8¢ 2NS
280 91 SeP Y80 891 ¥8'v 980 9Lt Sty () INS
2.0 160 €0 260 S.0 260 wiou eAnodslgng
€80 991 (WArd 880 €1 €12 G680 26} 60°C €11V
/80 GG'1 or'e 680 6V1 S22 060 L'} €52 AN
¥8°0 2L'1 S¥'S 120 9L 62'S 180 08t S1'S o) 1Ly
2.0 680 2.0 680 €0 680 spnmmy
160 OF't Le €60 6£°1 612 160 €¥t 822 S1INI
060 991 S¥'S 880 9.1 €e's 060 L'} aL's (4) 2LNI
Y60 961 Sv'e G660 GG'L £v'e 260 991 9.2 FINI
Y80 +60 ¥8°0 160 €80 160 uonua|
HAV 4D Y as UBIN HAV 4D Y as e HAV 4D Y as uea] W] /Aonnsuoy)

(967 = N) OLIRUQDS 309U SSaUISNQOY

(L6T = N) T oLeudg

(91¢ = N) 1 oLreusdS

9102 1UdV £0 70:90 T [Afeiq1 xassns Jo Alsiealun] Ag pepeojumoq

S[OPOJAl JUSWIAINSEIA JO ANPIJBA JUISIOAUO)) pue AN[qeIRY T 9[qBL

98'0 €91 1S€ 980 89t VAR €80 99t 0L'€ €3NIL
€60 69t SE'v €60 <¢9'l 'y ¥6'0 SS9t VXA 4 (d) 2aniL
€60 /91 Se'v G6'0 /S'L Wy ¢6'0 99t 8¢y (") 1anIL
€80 €60 ¥8°0 ¥6°0 180 €60 ainssaid awn jo Auenag
€6'0 89l 90'S /60 99'L 88V €60 691 86V €3sSN
96'0 69t v1'S c¢6'0 99t 68V .60 99t 98 ¢3asn
96'0 99'I €6'Y G6°0 99t 8LV ¥6'0 89t QLY L13aSN
060 /60 680 960 060 960 BP0 8|qIssddoE-}auUlBIU| JO ssaundsN
060 <cO'} [4*h74 160 <Ot 6S'Y 980 €'t SOy ¥31Nd
6.0 /LZ'} 80'Y 6.0 €L 66°€ 180 ¥l S6°€ €371Nd
¥8°0 VIl (VA4 880 €I'I 09'v 060 €2t .SV ¢31nd
/80 9L’} 6S'Y €80 LI’ €Sy 60 €c't aS'y 137Ny
¢/0 160 €20 160 9.0 €60 S9Ny :8jewl|d oM [edlyl
¢80 0S'L 9EV G20 IS°L cl'y £2°0 ISL s8Iy VMV
68'0 SO'L 60'S 880 /0L €0'G c60 L1 66t EMVT
160 ¢cc't 96'Y 680 €I'L €6'Y c¢6'0 8Lt L6'v SMV
880 |I'L LS 680 Z0'L S0'S 680 GlI'I 10'S LMV
/2’0 €60 €0 ¢60 /2’0 €60 9P0J @ MET :BBWI|O YIoM [edlyiq
HAV ¥D X ‘as UBdN HAV ¥D X ‘as UBIN HAV d¥D X ‘as UBIN W_)AoNnsuoy)

(967 = N) OLIBUSDS OOUD SSaUISNQOY

(L6T = N) T oLreudg

(91¢ = N) 1 ourUDS

306

panunuo) 'z d[qeL

9102 1UdV £0 70:90 T [Afeiq1 xassns Jo Alsiealun] Ag pepeojumoq

307

"POIOBIIXd QOUBLIEA 0FLIOAE = AV

<Kiqeryar oyisodwos = YD Jonnsuod pajeuSIsop S) U0 Wol Jo JUIPLo] = Y ‘UOHBIASP PIEPUE)S = (IS ‘W) PIPOJ 3SIOADI = (V) “SaION
g xipuaddy 990G "SOLIBUOOS) USOMIOQ SIQJJIP SWIT dY} JO JUIPIOM Y], 4

6.0

c8'0

¢80

680

¢6'0

€60

€6°0

¥6°0

680
98'0
¢6'0

c6'0
160
680

680
160
c6'0

S6°0
¥6°0

00°¢
08’}
88’

L}
181
9L’

cl'l
89|
L}

19}
gL'}

08¢
i'e
140 %

ov'e
Yo'y
1%

89
€L's
88'¢c

€6'¢c
S1'e

9102 1UdV £0 70:90 T [Afeiq1 xassns Jo Alsiealun] Ag pepeojumoq

290

880

620

G680

G680

96°0

¢6'0

2¢6'0

06°0
c9'0
680

¥6°0
¢6'0
G6°0

880
680
060

/60
/80

16°1
S9'1
(4"

4
4
6.1

9Lt
VLl
9L’}

88’
81

1204
/8¢
9LV

G9'¢
sy
¥9'€

1204
00'S
€0'¢

cce
09'¢

040

¥8°0

080

680

/80

¥6°0

¢6'0

¥6°0

€80
080
/80

€60
880
€6°0

06°0
16°0
/80

¥6°0
G6°0

L6°L et 4 (") €1430
19°L v.'¢ cld30
€Ll Y6y (") 11430
Aurepso wewysiung
28t L€ (") enaas
18} al'y ¢h\3as
98l 8L'¢ (") 1A3as
(1odojanap) Aenas juswysiund
8L} €0y €dId4S
8L’ 89 4=1EK]
LU se'e (") 14i4s
(wuyy) Aienss uswysiund
S9'L 16'¢ x¢1S00
0L’} 145 LSOO

2oue||dwod Jo 1s0)

308

¥6'0 650 L00- 910 vL0- v10 2eo GL'0- 0S0—- gevo- 8€0— (1odojonep) Awenes uswysiund “||
680 800— O0LO 20'0— 020 2eo 8L'0—- 9€0— 6£0- ve0— (wuy) Aenss juswysiund ‘0l

60 710 G0'0— 100 00 700 lc’0 SL0 810 @oue||dwod o 180D 6

160 00 ¥20 ZLo 90'0—- €00 S0 yAN(] ainssaid awn jo Auenss g

160 200 €00 S0°0 00 00 yAN(] 9p0d 8|qISsadde-jaulsiU| JO ssaulnjesn "L

G680 S9°0 00— €L0— 800 LHO— S9Ny 81ewl|d YI0M [edlyid "9

G680 800— ¢c0— 8c0— 12 0— 9P0J '3 MET BlBWIO HIOM [edIU1T 'S

SL°0 L0 800 80°0 [0AUOD [elolABYSQ PBAIBJIS]

980 950 2s0 wiou 8ARoslgng g

680 L0 SpNINY 2

260 uonualu| “|

(262 = N) g oueuddg

¥8°0 /Lc0O 820 <¢00- SO0 G0'0— €00 000 0c0— 90— O0Fo- 90°0— Awrepso uswysiung -g|
160 G50 L00- .00 000 .20 LE'0 Ll20—- €90- 9¥ro- 9e°0— (1odojensp) Awienes juswysiund “||
680 €00- €00 10’0 610 120 2g0- 6€0- €vo- 2e0- (wuy) Aenss uswysiund ‘0l

60 0L0 00 80'0— GI0—- €00 120 9¢0 Ge0 8oue||dwod O 180D '6

060 910 L0 800 €00— V10 910 AN ainssaid awi jo Ajuenss g

S6°0 S0°0 €00— 100 00 LL'O 610 9p0Y 9|qISsadde-jaulelu| JO ssaulnjesn "L

180 €20 6L0— 220- SLO0- SL'0— $8|ny :81BWIjD YIOM [e0IY1T "9

880 91'0— €€0- |Ic0— le0— 9P0J 13 MET BleWIO HIOM [edIY1T 'S

2Lo 120 €20 610 [0AUOD [elolABYS] PBAIBJIS] Y

180 890 €90 wiou 8Aoslgng g

G680 €90 SpNinyY ‘¢

16'0 uonua| " |

(9LE = N) | oueuSOg

4! It 01 6 8 L 9 S 14 3 4 [Pnnsuo)

S[OPOJAl JUSWIAINSEIIA JO AJIPI[EA JUBUIWILIOSI(] "€ 9]qBL

9102 1UdV £0 70:90 T [Afeiq1 xassns Jo Alsiealun] Ag pepeojumoq

309

‘paygsnes sI (sanjea [euodelp Ay} Uey) Jomo] SuIdq SANJEA UWN[OD pue
MOI Se PaULJop) UOLILID AJIPI[BA JUBUIWILIOSIP IONIIRT-[[OUI0 AU} ‘SHAV Yl MO[dq oIk [euoSeIp oy} Iopun sanjea parenbs oy} 90UIS ‘SIONISUOD UIIMIOQ SUONR]ILIOD
PAZIPIepUR)S dIe SALNUD [RUOSBIP-JJO Y} Jonnsuod 9A10adsar) Jo (JAY) PIoRNXd ddouRLIBA AFRIOAR U] JO S)001 drenbs a1e saluoe papjoq [eUOTeIp JY] -SoION

680 €0 Lc0 800-
16’0 690 ZLI'O—

060 10—

S6°0

¢80 V¥I'0 020 810-

80°0—
910
L0
800
16°0

€10

800
00
90°0—
900~
€10
S6°0

c0'0—

cl’o
leo
leo
010
c0'0
100
S8°0

€00

L0
€20
2’0
€00
900
€10
S9'0
880

€00

920~
Gc'0—
Lg0—
91’0
c0'0—
€00
00—
00—
6.0

90°0—

8¢°0—
o—
o—
91’0
600
clo
L1°0-
G20~
0€'0
S8°0

81'0—

cc’0—
e 0-
v’ 0-
10
L1°0
200
/L1'0-
L0~
800
950
S8°0

10—

S1L°0—
8¢'0—
ce’0—
cc’o
L0
800
10—
920~
0c'0
S50
290
260

0L'0—

Awrepao juawysiund ‘g|
(1odojanap) Aulenses Juswysiund ‘||
(wai) Aenss Juswysiund 01}

9ouel|dwod Jo 150D

‘6
ainssaid awi Jo Aluonag -

P09 9|qISSS20E-}oUIdlU| JO SSBUINBSN
S9|NyY :9)ewWI|O YoM [edlyg -

9p02 X MET :91BWI|O YoM [edIyiT *
[0J]UOD [BIOINBYSQ PBAIBOId *

wJiou aAnoalgng -

spnmmy -

uonuaw| -

— AN MO TN O~

(962 = N) oueUBIS 08Yd SSauIsnqoy

Awurepsd yuswysiung ‘gL

9102 1UdV £0 70:90 T [Afeiq1 xassns Jo Alsiealun] Ag pepeojumoq

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

310 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

Usefulness o

— Attitude
Internet-accessible 0.085*

R?=0.346

code o Q%=0.223
- 0AM® . ? 499.
lSeverlty of N * Ethical work
time pressure fl-'\ o climate: Law &
N code
Cost of o -0.360***
compliance 4
P Subj. norm Intention
R*=0.109 0.184** R2=0.417

Q*=0.076

Punishment

Q*=0.333

severity (firm) . i 0.044
ETT— Ethical work
severity (de- 4 climate: Rules
I 9
veloper) Q.Ql
Punishment Perceived
certaint behavioral
Y control
Note: Significant coefficients are bolded; N = 316. — Significant path
*significant at 5%, ** significant at 1%, *** significantat0.1% e » Not significant path
Figure 3. Research Model Estimation in Scenario 1
Usefulness of Attitude
Internet-accessible ~ --serree 0.038 R=0.267
code o * Q’=0.177
022 - 0.5,
Severity of & Ethical work pa
fime pressure Q o % climate: Law &
q"‘ code
Cost of Qf“ *
y J *
compliance “ Subj. norm Intention
P R*=0.048 0.122* R?=0.607
; 2_ o
Punishment AN @=0032 Q= 0.507
severity (firm) Q.Q * 0.029 -
7/
Bunishment Ethical work
severity (de- climate: Rules
.
veloper) y o o0
Punishment Perceived ’
certaint behavioral
Y control
Note: Significant coefficients are bolded; N = 297. — Significant path
* significant at 5%, ** significant at 1%, *** significantat0.1% e » Not significant path

Figure 4. Research Model Estimation in Scenario 2

of compliance (H5c) positively drive attitude. Punishment certainty (H6c) did not
exhibit the proposed negative effect. Surprisingly, in the case of scenario 1, we even
find a weakly significant effect in the opposite direction. However, it is highly likely that
this finding is a statistical artifact.” The results of the research model hypothesis testing
are summarized in Table 4.

Robustness Checks

We conducted extensive additional analyses to ensure the nonspuriousness of our
results. First, to control for common methods variance [see 58], we modeled it
separately using (1) a latent variable and (2) a marker variable. For the latter
approach, we included the short form of the Marlowe-Crowne social desirability
scale [68], which shows cross-loadings with several of our constructs. In doing so,
we followed current practice in how to model common methods variance using PLS

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 311

Table 4. Summary of Research Model Hypotheses Testing

Confirmed?

Hypothesis Scenario 1 Scenario 2

Theory of planned behavior model

H1 Developers’ attitude toward unethical Internet- v v
accessible code reuse positively affects their
intention to engage in such behavior.

H2 Developers’ subjective norm concerning unethical v v
Internet-accessible code reuse positively affects
their intention to engage in such behavior.

H3 Developers’ perceived behavioral control regarding X X
unethical Internet-accessible code reuse
positively affects their intention to engage in such
behavior.

Ethical work climate
H4a The more a firm’s ethical work climate is perceived v v
to emphasize compliance with laws and codes,
the lower will be developers’ level of subjective
norms supporting unethical Internet-accessible
code reuse.
H4b The more a firm’s ethical work climate is perceived X X
to emphasize compliance with firm rules, the
lower will be developers’ level of subjective
norms supporting unethical Internet-accessible
code reuse.

Cost-benefit calculations

H5a The perceived usefulness of Internet-accessible v X
code will have a positive effect on developers’
attitude toward unethical Internet-accessible
code reuse.

H5b The perceived severity of time pressure will have a v v
positive effect on developers’ attitude toward
unethical Internet-accessible code reuse.

H5¢ Higher perceived costs of compliance will have a v X
positive effect on developers’ attitude toward
unethical Internet-accessible code reuse.

The role of punishment

H6a Perceived punishment severity for their firm will v v
have a negative effect on developers’ attitude
toward unethical Internet-accessible code reuse.

Heéb Perceived punishment severity for themselves will v v
have a negative effect on developers’ attitude
toward unethical Internet-accessible code reuse.

Héc Perceived punishment certainty will have a X X
negative effect on developers’ attitude toward
unethical Internet-accessible code reuse.

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

312 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

(e.g., [17]). We found that all approaches produce results that are qualitatively
identical to our standard models, so we only report those herein.

Second, because of the high correlation between the two ethical work climate
constructs (see Table 3), we also studied separate models containing only one of
them, as well as one that combines them into one. We found that these checks also
do not qualitatively change any of our results. On its own, the rules construct has the
hypothesized negative effect on subjective norm (H4b), but the effect is lower in
magnitude than that of the law and code construct; the same applies to the combined
construct. This result suggests that, although the effect of the rules dimension might
be underreported in our main model, it is still weaker than the effect of the law and
code dimension. We also conducted a subsample analysis for each scenario, includ-
ing only those developers who had indicated that their firms had devised specific
rules for IAC reuse, to see whether the respective ethical work climate construct
would have a different effect for this group. No differences were found for this
construct or any other hypothesis.

Third, one might argue that individuals need to positively value the reuse of IAC
in general so that their responses to questions on doing so unethically are not merely
hypothetical. To do so, we reduced our sample to include only individuals who think
that IAC reuse is at least “somewhat” beneficial according to our usefulness
measure. Our results remain qualitatively unchanged, independent of whether or
not we still include the usefulness measure in the model.

Fourth, we compared the results of scenario 1 against the robustness check
scenario, in which individuals reuse a component instead of a snippet. We found a
weakly significant effect of perceived behavioral control, suggesting that indivi-
duals’ perception of their ability to get away with unethical IAC reuse matters more
in this case. Beyond that, we found that significant paths and coefficient sizes more
closely resemble scenario 2 than scenario 1, indicating that varied types of IAC reuse
are motivated and evaluated differently by different individuals.®

Fifth, because component-based estimation models like PLS do not easily allow
for inclusion of multiple “simple” control variables, we conducted exploratory
multigroup analyses to see whether contextual variables not included in our model
might extend our analysis. In separate estimations, we compared individuals whose
employers had implemented policies on IAC reuse with those whose employers had
not, individuals in different job roles, or individuals of different self-reported skill
levels. Yet again, our results remained qualitatively unchanged. Employing other
individual-level variables such as developers’ age, their home region [40], or their
level of job satisfaction for multigroup analysis showed that these are (expectedly)
cause of some between-group variation. However, across the three scenarios, they
did not cause consistent changes in our variables of interest.

Finally, we applied finite mixture PLS to uncover unobserved heterogeneity in our
coefficient estimates (e.g., [59]). If such heterogeneity existed, it might have caused
misleading interpretations. However, this analysis did not reveal any consistent
latent classes that would need to be accounted for specifically. Consequently, we
conclude that our findings are robust.

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 313

Discussion and Implications

WE SET oUT TO EXPLAIN WHY individuals engage in a type of unethical programming
behavior, the unethical reuse of IAC. This type of unethical behavior, so we argued,
is substantially different from established research on IS ethics, in that its creative
nature might fundamentally alter the process of unethical behavior, as well as its
drivers. Developing an original TPB-based research model, we found the intent to
reuse Internet-accessible code unethically to be driven by subjective norms, which
are in turn guided by perceptions of a work climate referencing larger professional
and legal codes. In addition, although attitude mattered significantly in all our
scenarios, we found that drivers of attitude strongly vary between our scenarios,
unlike the findings in previous studies such as Bulgurcu et al.’s work on compliance
[14]. We also found no significant effect of perceived behavioral control on devel-
opers’ intent to engage in unethical IAC reuse. Earlier work on ethical behavior
(e.g., [43]) has typically explained this finding by arguing that the analyzed behavior
is under complete volitional control. Yet, this reasoning seems inapplicable because
the standard deviations are not lower than those of other constructs (see Table 3).
Rather, we point to a general gap in the literature that seems to fall short of
coherently explaining the role of perceived behavioral control when ethical behavior
is at stake, which future research should address.

Implications for Theory

Our findings allow us to contribute to the IS literature with regard to ethical decision
making in programming and reusing code, evaluation of behavior, and the role of an
ethical work climate.

First, by investigating the determinants of individuals’ attitude toward unethical
IAC reuse, this study sheds light onto how individuals arrive at ethical judgments
while programming. This finding extends insights gained from studies focusing on
the (passive) adoption of new tools, processes, or techniques that individuals in IS
may draw upon—for example, those building on the technology acceptance model
(e.g., [78])—in which benefit components are usually found to outweigh cost
factors. Oppositely, we find that a teleological weighing of positive and negative
consequences, in particular regarding the risk of punishments resulting from unethi-
cal behavior, helps to explain individual-level attitudes: our results clearly show that
the constructs capturing costs from eventual punishments seem to be of higher
importance than any construct reflecting perceived benefits. Notably, such pro-
nounced differences between costs and benefits are also not found in studies of
unethical behavior in less creative settings, such as software piracy [56].

In this vein, we also note substantial differences across scenarios. This finding is in
contrast to a purely rationality-based approach, as exemplified by Bulgurcu etal. [14]. In
such an approach, the components from which a cost-benefit analysis is derived should
exhibit uniform behavior when only the magnitude of unethical behavior is manipu-
lated. We conjecture that the unequal importance of certain factors in teleological

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

314 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

evaluations stems from the associated deontological assessment of the scenarios. In
scenario 1, programmers might be able to convince themselves that a violation of license
terms is unlikely and a careless approach is justifiable, but scenario 2 describes actual,
unambiguous unethical reuse. We call for future research to further explore the depen-
dency of teleological evaluations on deontological judgments. Our study provides some
initial insights in this direction by showing individuals’ changing rationale in their cost-
benefit evaluation of unethical IAC reuse: In scenario 1, they incorporate a full set of
consequences when forming their attitudes. In scenario 2, only the severity of time
pressure facilitates a positive evaluation, making clear how the context of action will
matter tremendously for deriving ethical and moral judgment (also see [40, 54]) in
programming.

In sum, we show how ethical judgments in TPB-based models may vary, even if the
underlying ethical issue is effectively the same. For researchers, this implies that to
ensure compatibility of results of studies on IS ethics, they should reuse existing
scenarios to extend prior research. A potential explanation for these differences may
be found in the social psychology literature, more notably self-concept maintenance
theory [51]: When weighing opposing arguments in an ethical dilemma, people want to
maximize benefits while at the same time maintaining a positive view of themselves [28,
51]. So when there is the possibility to behave unethically, self-serving rationalizations
and justifications may be idiosyncratically created to convince oneself that an activity is
acceptable. Creative persons, such as programmers, are especially able to come up with
such justifications [28, 51], particularly in scenarios in which justifications include only
minor reinterpretation of what is unethical behavior, or in ambiguous situations [64].

Second, we contribute to work on the ethical work climate construct, particularly
in the IS context (e.g., [48, 75, 77]). By integrating its “law and code” and “rules”
dimensions into a TPB-based model, we respond to Flannery and May’s call to
“examine the direct effect of organizational climate on individual ethical decision
making” [24, p. 656]. We show that an ethical work climate has no direct effect on
intention but becomes a constituting element of individuals’ subjective norm, in that
it drives their assumption about their peers’ evaluation of what is acceptable
behavior. We thus suggest that individuals do not exhibit ethical behavior because
of an ethical work climate. Rather, the ethical work climate influences what indivi-
duals perceive to be their peers’ judgment of what is appropriate behavior (which in
turn guides individual behavior), explaining the mixed findings of earlier studies on
the role and efficacy of ethical climates and codes [31, 37, 57].

Relatedly, we also uncover an important relational element, an aspect of ethical
decision making often underrepresented even in the literature on ethics and morality
(e.g., [41, pp. 320-386]). Specifically, we highlight that individual perceptions are
driven more by the desire to adhere to institutional norms that originate from beyond
the boundary of the firm, as opposed to firm-specific rules. In this context,
Harrington [31] suggested that firm-specific codes are less effective than profes-
sional codes because they are not IS specific. We show how external norms remain
more important even if internal rules are IS specific. We argue that this consistent
difference in evaluation is a result of the higher degree of institutionalization of

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 315

external aspects of ethical work climates: it is early and strong socialization that
creates the feeling of belonging to a profession or practice. If such an institution, in
turn, advocates ethical programming behavior, it will strongly affect individuals’
assessment of the subjective norm—more strongly than firm-specific rules indivi-
duals may get to know later in their careers. In this vein, future research might thus
analyze IAC reuse as a practice, based on institutional or structuration theory, both
of which have previously been applied to the field of IS (e.g., [35, 55]).

Finally, our overall model allows us to contribute to ethical research in IS. In
general, our study is the first to concomitantly theorize deontological and teleologi-
cal judgments by jointly drawing on expected utility, deterrence, and ethical work
climate theory. Doing so allows us to study the effect of the respective constructs net
of each other, whereas prior research would have either ignored one of these
elements or operationalized them jointly. For example, Harrington [31] argued that
an ethical work climate fosters a deterrent character, especially if a professional code
of ethics is enforced, but she does not control for an actual deterrent effect in her
study. Bulgurcu et al. [14] looked at deterrence and expected utility theory, but their
study in turn did not look into the roles of punishment certainty and ethical work
climates. We encourage future research to follow this comprehensive approach to
foster understanding of ethical decision making. To do so, researchers might apply
TPB-based models similar to ours, enriched by theorizing on perceived behavioral
control, to explain the mixed findings of our work and earlier work. Furthermore, we
extend ethical research in IS to include unethical behavior in the context of pro-
gramming, with unethical IAC reuse as our object of study. So far, neither the stream
of ethics research in the IS context (e.g., [49, 56]) nor the body of literature that
investigates IAC reuse in commercial software development [e.g., 25] has looked at
the potentially unethical nature of developers’ ad hoc IAC reuse. We show how IAC
reuse can be modeled as an individual-level decision substantially affected by ethical
considerations as reflected in the effects of deterrence and an ethical work climate. In
this context, our findings also add an ethical component to the literature on reuse of
knowledge, of which software is just one instance (e.g., [47]). Here, we point toward
a potential darker side of reuse and provide an explanation for its existence. In doing
so, we provide a basis for more work on the ethics of knowledge reuse, its
theoretical and individual-level foundations, and its implementation.

Limitations and Suggestions for Future Research

This study has some limitations that need to be taken into account. First, with a response
rate of 9.9 percent, our study is in line with many other Internet-based surveys but still
relies on a relatively small share of the population when generalizing its results. Second,
the study was conducted among professional software developers active in newsgroups.
However, these may well be younger, more OSS savvy, and more proficient in software
development. Third, although we have taken measures to reduce social desirability
effects, we still cannot completely eliminate a possible distortion of our results. Fourth,

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

316 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

as is common in the literature [1, 9], we use intention and not the actual behavior as our
dependent variable. However, attempting to link individual coding behavior to a survey
soliciting individuals’ motivation to unethically reuse IAC would in itself raise ethical
questions and also severe concerns of social desirability, far beyond their possible
impact in our current study. Nonetheless, future studies should strive to capture actual
ethical behavior to scrutinize the intention-behavior relationship and potential modera-
tors, as well as the direct effects of the variables on behavior. Fifth, future research might
inquire into the efficacy of some of the levers we identify. For example, researchers
could look into how varied levels of perceived punishment severity and certainty affect
unethical behavior.” In line with our findings, such work might also incorporate con-
siderations of being outcast by one’s colleagues or profession to more elaborately
account for the effects of an ethical work climate we describe. Sixth, given our research
design, we could not measure individuals’ level of awareness of the ethical dilemma.®
Still, awareness has been shown to influence outcome beliefs in similar contexts [14],
and its inclusion in work extending ours might shed further insight into how individuals
form ethical evaluations. Seventh, we do not differentiate between punishment certainty
for firms and developers. Although it is possible that programmers may perceive
punishment certainty differently for the firm than for themselves, we argue that indivi-
dual skill is the main determinant of getting caught. This ability in turn is, in our view,
sufficiently captured by the perceived behavioral control dimension of the TPB. Finally,
although programming is a creative task, not all programmers are equally creative. Our
results need additional verification in a context in which programmers are less skilled
than the ones in our sample. In such contexts, we would expect the lure of unethical IAC
reuse to be even higher (in particular, the benefits of usefulness of code and alleviating
time pressure). At the same time, people may be less driven by external than by firm-
internal normative forces, so that the balance between the law and code dimension, on
the one hand, and the rules dimension, on the other, may change. In this vein, we would
expect similar effects if the task at hand to be carried out by a programmer becomes
duller, as would be caused by, for example, a change of setting from programming from
scratch to mundane updating or maintenance work.

Both our findings and our limitations point out avenues for future research.
Beyond scrutinizing external validity, future work should try to capture the depen-
dent variable of our research model through means other than self-reporting to
reduce worries about social desirability. Data on the dependent variable might be
gathered from, for example, firms scanning the software they develop for reused
IAC with automated tools to detect instances of violated license obligations. In
addition, the finding that perceived behavioral control does not influence, or only
weakly influences, developers’ intent to engage in unethical IAC reuse is surprising
and questions the effect of tools integrated into developers’ workstations to protect
them from the risks of ad hoc TAC reuse. The growing popularity of such tools
warrants further and more explicit examination to understand exactly how such tools
affect professional software developers and their work.

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 317

Implications for Practice

Our findings highlight several levers firms can employ to influence individual-level
ethical decision making to ameliorate potential firm-level risks. In particular, they
support recent practitioner-oriented work calling on firms to reuse IAC system-
atically [62]. Regarding ad hoc reuse, first, firms should inform developers about
the considerable consequences of disregarding license obligations, and enforce them
in order to maintain perceived severity. Second, developers in firms in which missed
deadlines have less severe negative consequences tend to engage in less unethical
IAC reuse. A general policy of not enforcing deadlines is, of course, unrealistic
given that firms themselves face deadlines enforced by their customers [7]. Yet,
firms need to learn to set realistic deadlines in project management to make severity
considerations from missing them less relevant. Third, firms should deploy measures
to reduce developers’ costs of compliance. For example, firms might want to create
internal databases or Wikis, or FAQs, or appoint internal IAC experts to serve as first
point of information for developers (also see [62]). Finally, firms should strive to
build or foster a work climate in which compliance with the norms provided by
institutions such as the law and the professions is deemed important.

Conclusion

This study makes several contributions to the literature on ethical decision making.
We introduce programming, as one of the most central IS activities, into ethical
decision-making research. First, we show that this context differs from other unethi-
cal behavior, such as software piracy, in that programmers are weighing the con-
sequences of potential unethical actions, giving more weight to potential punishment
than perceived benefits. Second, we offer an explanation for mixed findings in
earlier studies on the effect of ethical work climates and codes. We show that
climate influences intention indirectly, through what individuals perceive to be
their peers’ ethical standards. Also, unlike previous literature suggests, we find
that external norms carry more weight than internal ones, even if those rules are
specific to the subject matter. Third, our study is the first to theorize a model of
unethical behavior based on deontological and teleological judgments by jointly
incorporating utility, deterrence, and ethical work climate theory. This comprehen-
sive approach also allows us to study concurrent effects net of each other and
explain previous mixed results, while at the same time adding an ethical view on
the literature on reuse of knowledge. Finally, our investigation on how programmers
make their ethical judgments enables us to give concrete practical advice on
preventing unethical code use.

Acknowledgments: This article has greatly benefited from the guidance of Professor Zwass,
an associate editor, and three reviewers. Oliver Alexy is grateful for the support of both the
UK Innovation Research Centre (RES/G028591/1; sponsored by the Economic and Social
Research Council; the National Endowment for Science, Technology and the Arts; the UK

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

318 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

Department for Business, Innovation and Skills; and the Technology Strategy Board) and the
Engineering and Physical Sciences Research Council (GR/R95371/01). We appreciate valu-
able comments from Burcu Bulgurcu and Carol Saunders, and from seminar participants at
Technische Universitdt Miinchen and the 2011 Academy of Management Conference. All
errors are, of course, our own.

NOTES

1. Amabile [3] defined creativity as a product or process that is both novel and appropriate
(i.e., useful, valuable) and requires that the problem it solves be heuristic rather than
algorithmic. Programming also satisfies this definition: programming requires both a deep
understanding of the principles that underlie a problem and a very high degree of accuracy in
its implementation, similar to mathematics or creative writing [22].

2. For example, Linksys developed router software that contained a substantial share of
OSS code from the Internet not properly accounted for. As a result, Cisco, which later
acquired Linksys, was obligated to share large parts of the router’s source code with its
customers, permitting modification and redistribution without a fee. Similarly, all software
companies relying on secrecy may fear the consequences of unethical reuse of IAC. For
example, VMware wrote in the “risk” section of its June 2008 quarterly filings that reused
IAC could require it to “release the source code of our proprietary software, which could
substantially help our competitors develop products that are similar to or better than ours.”

3. Notably, however, compliance behavior is to be considered significantly different from
unethical behavior. In this vein, regarding their own study, Bulgurcu et al. explicitly called for
future work to “investigate the joint role of consequence-based motivations and morality/
values on employee compliance behavior” [14, p. 544].

4. The research model does not test a relationship between the general existence of time
pressure and developers’ attitude. Whereas most software development projects have some
degree of time pressure, developers only react to this if they perceive “severe” consequences
from not meeting the resulting deadlines. Furthermore, existence of time pressure may vary
from project to project and could even differ for different points in time within a project.
Contrary to this, severity of time pressure should be rather stable over time within a firm and
thus should relate better to attitude, which is also expected to be rather stable over time.

5. When we eliminate the two punishment severity items that show medium correlations
with punishment certainty (see Table 3), the effect of punishment certainty becomes negative
and significant, as proposed by H6c for scenarios 1 and 2.

6. The corresponding robustness check scenario for scenario 2, the reuse of a complete
module in conscious violation of its license obligations, was considered rather rare by our
interview partners and hence was not included in our analysis.

7. We thank our careful reviewers for this suggestion as well as the two suggestions listed as
numbers 6 and 7.

8. Given that we used a scenario experiment, we would have needed to ask for individuals’
perception of Joe’s awareness, which would have been unlikely to produce meaningful or
reliable results. Nonetheless, in robustness checks for which we try to control for individuals’
awareness in their personal coding situations, we find that our results remain qualitatively
unchanged.

REFERENCES

1. Ajzen, 1. The theory of planned behavior. Organizational Behavior and Human
Decision Processes, 50,2 (1991), 179-211.

2. Ajzen, 1. Constructing a theory of planned behavior questionnaire: Conceptual and
methodological considerations, 2002 (available at http://people.umass.edu/aizen/pdf/tpb.mea-
surement.pdf).

http://people.umass.edu/aizen/pdf/tpb.measurement.pdf)
http://people.umass.edu/aizen/pdf/tpb.measurement.pdf)

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 319

3. Amabile, T.M. The social psychology of creativity: A componential conceptualization.
Journal of Personality and Social Psychology, 45, 2 (1983), 357.

4. Anderson, J.C., and Gerbing, D.W. Structural equation modeling in practice: A review
and recommended two-step approach. Psychological Bulletin, 103, 3 (1998), 411-423.

5. Anderson, R.E.; Johnson, D.G.; Gotterbarn, D.; and Perrolle, J. Using the new ACM
code of ethics in decision making. Communications of the ACM, 36, 2 (1993), 98-107.

6. Armstrong, J.S., and Overton, T.S. Estimating nonresponse bias in mail surveys.
Journal of Marketing Research, 14, 3 (1977), 396—402.

7. Austin, R.D. The effects of time pressure on quality in software development.
Information Systems Research, 12,2 (2001), 195-207.

8. Banerjee, D.; Cronan, T.P.; and Jones, T.W. Modeling IT ethics: A study in situational
ethics. MIS Quarterly, 22, 1 (1998), 31-60.

9.Beck, L., and Ajzen, I. Predicting dishonest actions using the theory of planned
behavior. Journal of Research in Personality, 25, 3 (1991), 285-301.

10. Berenbach, B., and Broy, M. Professional and ethical dilemmas in software engineering.
Computer, 42, 1 (2009), 74-80.

11. Boudreau, M.-C.; Gefen, D.; and Straub, D.W. Validation in information systems
research: A state-of-the-art assessment. MIS Quarterly, 25, 1 (2001), 1-16.

12. Brooks, F.P. The Mythical Man-Month: Essays on Software Engineering. Reading, MA:
Addison-Wesley, 1975.

13. Buchan, H.F. Ethical decision making in the public accounting profession: An extension
of Ajzen’s theory of planned behavior. Journal of Business Ethics, 61, 2 (2005), 165-181.

14. Bulgurcu, B.; Cavusoglu, H.; and Benbasat, 1. Information security policy compliance:
An empirical study of rationality-based beliefs and information security awareness. MIS
Quarterly, 34, 3 (2010), 523-548.

15. Chen, Y.; Ramamurthy, K.; and Wen, K.-W. Organizations’ information security policy
compliance: Stick or carrot approach? Journal of Management Information Systems, 29, 3
(2012), 157-188.

16. Chin, W.W. The partial least squares approach to structural equation modeling. In G.A.
Marcoulides (ed.), Modern Methods for Business Research. Mahwah, NJ: Lawrence Erlbaum,
1998, pp. 295-358.

17. Chin, W.W.; Thatcher, J.B.; Wright, R.T.; and Steel, D. Controlling for common method
variance in PLS analysis: The measured latent marker variable approach. In H. Abdi, W.W.
Chin, V. Esposito Vinzi, G. Russolillo, and L. Trinchera (eds.), New Perspectives in Partial
Least Squares and Related Methods. New York: Springer, 2013, pp. 231-239.

18. Couper, M.P. Web surveys: A review of issues and approaches. Public Opinion
Quarterly, 64, 4 (2000), 464—494.

19. Coyle, J.R.; Gould, S.J.; Gupta, P.; and Gupta, R. “To buy or to priate””: The matrix of
music consumers’ acquisition-mode decision-making. Journal of Business Research, 62, 10
(2009), 1031-1037.

20. Cronan, T.P., and Al-Rafee, S. Factors that influence the intention to pirate software and
media. Journal of Business Ethics, 78, 4 (2008), 527-545.

21. Ehrlich, 1. Participation in illegitimate activities: A theoretical and empirical investiga-
tion. Journal of Political Economy, 81, 3 (1973), 521-565.

22. Ershov, A.P. Aesthetics and the human factor in programming. Communications of the
ACM, 15,7 (1972), 501-505.

23. Fishburn, P. Utility Theory for Decision Making. New York: John Wiley & Sons, 1970.

24. Flannery, B.L., and May, D.R. Environmental ethical decision making in the U.S. metal-
finishing industry. Academy of Management Journal, 43, 4 (2000), 642—662.

25. Frakes, W.B., and Kang, K. Software reuse research: Status and future. /EEE
Transactions of Software Engineering, 31, 7 (2005), 529—536

26. Fredrickson, J.W. An exploratory approach to measuring the perceptions of strategic
decision process constructs. Strategic Management Journal, 7, 5 (1986), 473-483.

27. Gino, F., and Ariely, D. The dark side of creativity: Original thinkers can be more
dishonest. Journal of Personality and Social Psychology, 102, 3 (2012), 445-459.

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

320 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

28. Gino, F.; Ayal, S.; and Ariely, D. Contagion and differentiation in unethical behavior:
The effect of one bad apple on the barrel. Psychological Science, 20, 3 (2009), 393-398.

29. Gotterbarn, D., and Miller, K.W. Unmasking your software’s ethical risks. /IEEE
Software, 27, 1 (2010), 12—13.

30. Haefliger, S.; von Krogh, G.; and Spacth, S. Code reuse in open source software.
Management Science, 54, 1 (2008), 180—193.

31. Harrington, S.J. The effect of codes of ethics and personal denial of responsibility on
computer abuse judgements and intentions. MIS Quarterly, 20, 3 (1996), 257-278.

32. Henkel, J. Champions of revealing—The role of open source developers in commercial
firms. Industrial and Corporate Change, 18, 3 (2009), 435-471.

33. Henseler, J.; Ringle, C.M.; and Sinkovics, R. The use of partial least squares modeling
in international marketing. Advances in International Marketing, 20 (2009), 277-320.

34.Hunt, S.D., and Vitell, S. A general theory of marketing ethics. Journal of
Macromarketing, 6, 1 (1986), 5-16.

35. Jones, M.R., and Karsten, H. Giddens’s structuration theory and information systems
research. MIS Quarterly, 32, 1 (2008), 127-157.

36. Joreskog, K.G., and Wold, H. The ML and PLS Technique for Modelling with Latent
Variables: Historical and Comparative Aspects. Amsterdam: North-Holland, 1982.

37. Kaptein, M., and Schwartz, M. The effectiveness of business codes: A critical examina-
tion of existing studies and the development of an integrated research model. Journal of
Business Ethics, 77, 2 (2008), 111-127.

38. Kim, Y.E., and Stohr, E.A. Software reuse: Survey and research directions. Journal of
Management Information Systems, 14, 4 (1998), 113-147.

39. Knuth, D.E. Computer programming as an art. Communications of the ACM, 17, 12
(1974), 667-673.

40. Kohlberg, L. The Philosophy of Moral Development. San Francisco: Harper & Row,
1981.

41. Kohlberg, L. The Psychology of Moral Development. San Francisco: Harper & Row,
1984.

42. Krueger, C.W. Software reuse. ACM Computer Surveys, 24, 2 (1992), 131-183.

43. Kurland, N. Ethical intentions and the theories of reasoned action and planned behavior.
Journal of Applied Social Psychology, 25, 4 (1995), 297-313.

44. Levi, S.D., and Woodard, A. Open source software: How to use it and control it in the
corporate environment. Computer & Internet Lawyer, 21, 8 (2004), 8—13.

45. Lim, W.C. Effects of reuse on quality, productivity, and economics. /[EEE Sofiware, 11,
5 (1994), 23-28.

46. Limayem, M., and Hirt, S.G. Force of habit and information systems usage: Theory and
initial validation. Journal of the AIS, 4 (2003), 65-97.

47. Markus, M.L. Towards a theory of knowledge reuse: Types of knowledge reuse situa-
tions and factors in reuse success. Journal of Management Information Systems, 18, 1 (2001),
57-93.

48. Martin, K., and Cullen, J. Continuities and extensions of ethical climate theory: A meta-
analytic review. Journal of Business Ethics, 69, 2 (2006), 175-194.

49. Mason, R.O. Four ethical issues of the information age. MIS Quarterly, 10, 1 (1986), 5—
12.

50. Mayring, P. Qualitative content analysis. In U. Flick, E; von Kardoff, E., and I. Steinke
(eds.), A Companion to Qualitative Research. London: Sage, 2004, pp. 266—269.

51. Mazar, N., Amir, O., and Ariely, D. The dishonesty of honest people: A theory of self-
concept maintenance. Journal of Marketing Research, 45, 6 (2008), 633—644.

52. McGhee, D.D. Free and open source software licenses: Benefits, risks, and steps toward
ensuring compliance. Intellectual Property & Technology Law Journal, 19, 11 (2007), 5-9.

53. Mingers, J., and Walsham, G. Toward ethical information systems: The contribution of
discourse ethics. MIS Quarterly, 34, 4 (2010), 833-854.

54. Moores, T.T., and Chang, J.C.J. Ethical decision making in software piracy: Initial
development and test of a four-component model. MIS Quarterly, 30, 1 (2006), 167-180.

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 321

55. Orlikowski, W.J., and Barley, S.R. Technology and institutions: What can research on
information technology and research on organizations learn from each other? MIS Quarterly,
25,2 (2001), 145-165.

56. Peace, A.G.; Galletta, D.F.; and Thong, J.Y.L. Software piracy in the workplace: A model
and empirical test. Journal of Management Information Systems, 20, 1 (2003), 153-177.

57. Pierce, M.A., and Henry, J.W. Judgements about computer ethics: Do individual, co-
worker, and company judgements differ? Do company codes make a difference. Journal of
Business Ethics, 28, 4 (2000), 307-322.

58. Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; and Podsakoff, N.P. Common method
biases in behavioral research: A critical review of the literature and recommended remedies.
Journal of Applied Psychology, 88, 5 (2003), 879-903.

59. Ringle, C.M.; Sarstedt, M.; and Mooi, E.A. Response-based segmentation using
FIMIX-PLS: Theoretical foundations and an application to American customer satisfaction
index data. In R. Stahlbock, S.F. Crone, and S. Lessmann (eds.), Annals of Information
Systems, vol. 8. Special issue. Berlin: Springer, 2010, pp. 19-49.

60. Ringle, C.M.; Wende, S.; and Will, S. SmartPLS 2.0 (M3). Hamburg: SmartPLS, 2005
(available online www.smartpls.de).

61. Rosen, L. Open Source Licensing: Software Freedom and Intellectual Property Law.
Englewood Cliffs, NJ: Prentice-Hall, 2004.

62. Ruffin, C., and Ebert, C. Using open source software in product development: A primer.
IEEE Software, 21, 1 (2004), 82-86.

63. Schoemaker, P.J.H. The expected utility model: Its variants, purposes, evidence and
limitations. Journal of Economic Literature, 20, 2 (1982), 529-563.

64. Schweitzer, M., and Hsee, C. Stretching the truth: Elastic justification and motivated
communication of uncertain information. Journal of Risk and Uncertainty, 25,2 (2002), 185-201.

65. Shalley, C.E.; Zhou, J.; and Oldham, G.R. The effects of personal and contextual
characteristics on creativity: Where should we go from here? Journal of Management, 30, 6
(2004), 933-958.

66. Sojer, M., and Henkel, J. Code reuse in open source software development: Quantitative
evidence, drivers, and impediments. Journal of the AIS, 11, 12 (2010).

67. Sojer, M., and Henkel, J. License risks from ad-hoc reuse of code from the Internet: An
empirical investigation. Communications of the ACM, 54, 12 (2011), 74-81.

68. Strahan, R., and Gerbasi, K.C. Short, homogeneous versions of the Marlow-Crowne
Social Desirability Scale. Journal of Clinical Psychology, 28, 2 (1972), 191-193.

69. Straub, D.W. Effective IS security: An Empirical Study. Information Systems Research,
1, 3 (1990), 255-276.

70. Straub, D.W., and Collins, R.W. Key information liability issues facing managers:
Software piracy, proprietary databases, and individual rights to privacy. MIS Quarterly, 14,
2 (1990), 143-156.

71. Tetlock, P.E. Accountability: The neglected social context of judgement and choice. In
L.L. Cummings and B.M. Staw (eds.), Research in Organizational Behavior. Greenwich, CT:
JAI Press, 1985, pp. 297-332.

72. Thong, J.Y.L., and Yap, C.-S. Testing an ethical decision-making theory: The case of
softlifting. Journal of Management Information Systems, 15, 1 (1998), 213-237.

73. Thornton, D.; Gunningham, N.A.; and Kagan, R.A. General deterrence and corporate
environmental behavior. Law & Policy, 27, 2 (2005), 262-288.

74. Tittle, C.R. Sanctions and Social Deviance: The Question of Deterrence. New York:
Praeger, 1980.

75. Trevino, L. Ethical decision making in organizations: A person-situation interactionist
model. Academy of Management Review, 11, 3 (1986), 601-617.

76. Vance, A.; Lowry, P.B.; and Eggett, D. Using accountability to reduce access policy
violations in information systems. Journal of Management Information Systems, 29, 4 (2013),
263-290.

77. VanSandt, C.V.; Shepard, J.M.; and Zappe, S.M. An examination of the relationship
between ethical work climate and moral awareness. Journal of Business Ethics, 68, 4 (2006),
409-432.

http://www.smartpls.de)

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

322 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

78. Venkatesh, V.; Morris, M.G.; Davis, G.B.; and Davis, F.D. User acceptance of informa-
tion technology: Toward a unified view. MIS Quarterly, 27, 3 (2003), 425—478.

79. Victor, B., and Cullen, J.B. A theory and measure of ethical climate in organizations. In
W.C. Frederick and L.E. Preston (eds.), Research in Corporate Social Performance and
Policy, Greenwich, CT: JAI Press, 1987, pp. 51-71.

80. Victor, B., and Cullen, J.B. The organizational bases of ethical work climates.
Administrative Science Quarterly, 33, 1 (1988), 101-125.

81. Wyld, D.C., and Jones, C.A. The importance of context: The ethical work climate
construct and models of ethical decision making—An agenda for research. Journal of
Business Ethics, 16, 4 (1997), 465—472.

82. Yoon, C. Digital piracy intention: A comparison of theoretical models. Behaviour &
Information Technology, 31, 6 (2012), 565-576.

Appendix A. Questionnaire Items

ltems
Construct/ adapted
item code ltem from

Intention: How likely is it that while working at YourCo, you will do what Joe did as
described in the scenario?

INT1 I may do what Joe did in the future [46]
INT2 (R) | would never do what Joe did
INT3 It is likely that | will do what Joe did in the future

Attitude: If you, while working at YourCo, were in a situation similar to Joe’s, what would
you think about doing what he did?

ATT1 (R) For me at YourCo, doing what Joe did would be foolish in a [9]
similar situation

ATT2 For me at YourCo, doing what Joe did would be justified in a
similar situation

ATT3 When doing what Joe did in a similar situation at YourCo, the

benefits would outweigh the downsides for me

Subjective norm: What would other people say if they learned that while working at
YourCo, you had done what Joe did in the scenario?

SN1 (R) Most of my friends would disapprove [9]
SN2 Most of my friends would think that it is okay

SN3 Most of my colleagues at YourCo would not mind

SN4 (R) Most of my colleagues at YourCo would disapprove

Perceived behavioral control: Do you think that while working at YourCo, you would be
able to do what Joe did in the scenario?
PBC1 Personally, | could easily do what Joe did if | wanted to [2, 9]
PBC2 (R) Based on my knowledge and skills, | would find it difficult to
do what Joe did

PBC3 There is nothing outside of my control which could prevent
me from doing what Joe did
PBC4 It would be mostly up to me whether or not | do what Joe did

(continues)

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 323

Appendix A. Continued

Ethical work climate: Law & code: Please provide some information about the general
climate at YourCo by indicating how true the following statements are for YourCo.
LAW1 People at YourCo are expected to comply with the law and [80]
professional standards over and above other
considerations

LAW2 At YourCo, the law and ethical codes are a major
consideration

LAW3 At YourCo, people are expected to strictly follow legal and
professional standards

LAWA4 At YourCo, the first consideration is whether a decision

violates any law

Ethical work climate: Rules: Please provide some information about the general climate
at YourCo by indicating how true the following statements are for YourCo.

RULE1 It is very important to follow the company’s rules and [80]
procedures at YourCo

RULE2 At YourCo, everyone is expected to stick by company rules
and procedures

RULE3 Successful people at YourCo go by the book

RULE4 People at YourCo strictly obey the company policies

Usefulness of Internet-accessible code: How useful do you think would it be for your
work at YourCo to download snippets/components from the internet and integrate them
into the software you are developing for YourCo?

USE1 It would improve my job performance NEW
USE2 It would increase my productivity
USE3 It would make it easier for me to do my job

Severity of time pressure: How serious do you think it would be for you personally if you
failed to deliver required functionality on time at YourCo?

TIME1 (R) It would not hurt my career much [19]
TIME2 (R) It would not affect my future much
TIME3 There would be major negative consequences for me

Cost of compliance (used in scenario 1 and the robustness check scenario): How
easy would it be for you to check thoroughly for potential obligations that come with
snippets/components from the Internet that you want to integrate when working at
YourCo?

COST1 It would take very long for me to thoroughly check for all NEW
obligations that come with the snippets/components
COST2 It would be very difficult for me to check for all potential

obligations of the snippets/components

Cost of compliance (used in scenario 2): How easy do you think would it be for you to
discuss with YourCo about complying with the obligations of snippets that you want to
integrate in your work?

COST1 Such discussions would take very long NEW

COST2 Such discussions would be very difficult

Punishment severity (firm): How serious do you think would be the consequences for
YourCo if it became public that their software includes snippets/components from the
Internet, but does not fulfill the obligations of these snippets/components?

SFIR1 (R) There would be no or very low consequences for YourCo [56]

(continues)

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

324 SOJER, ALEXY, KLEINKNECHT, AND HENKEL

Appendix A. Continued

SFIR2 YourCo would be in serious legal trouble
SFIR3 YourCo would incur major financial losses

Punishment severity (developer): How serious do you think would be the consequences
for you personally if you were caught doing what Joe did in the scenario while working at
YourCo?

SDEV1 (R) It would not hurt my career much [19]

SDEV2 There would be major negative consequences for me

SDEV3 (R) It would not affect my future much

Punishment certainty: How easy do you think it would be to detect that YourCo’s software
contains snippets/components from the Internet?
CERT1 (R) It would be very difficult for anybody to find out NEW
CERT2 The probability that anybody would find out is very high
CERT3 (R) Scanning for snippets/components from the internet in
YourCo’s software is virtually impossible

Note: (R) = reverse-coded item; NEW = because no existing items were available to measure the
respective construct, new items were developed based on a thorough review of relevant literature
and our qualitative prestudy. The items were further tested and refined during two rounds of survey
pretests; survey participants were asked to assume “YourCo” is the last firm for which they have
been developing software. All of the above items are measured on a seven-point Likert scale
anchored by 1 (strongly disagree) and 7 (strongly agree).

Appendix B. Questionnaire Case Vignettes

Scenario 1: Not checking thoroughly for obligations from snippet
reuse

a. Setting: Joe works as programmer for a software firm and is responsible for
developing one module of the firm’s next software product for private consu-
mers. In the project there is enormous time pressure and Joe is already behind
schedule.

b. Problem: While Joe is a good programmer, there is a certain functionality
specified in the requirements of his module that he is not sure how to implement.
Additionally, he figures that even if he manages to implement this functionality,
it would take very long to do so and he would be late with his module.

c. Joe’s Approach: In order to avoid missing his deadline, he searches the
Internet for source code that implements the required functionality. He is
happy to find a project with such code, accesses its code base and—with
minor modifications—copies and pastes the lines of code from the Internet
project that implement the required functionality for his own project. When
copying and pasting the snippets, Joe does not check thoroughly whether
there are obligations that he has to fulfill when integrating them.

Downloaded by [University of Sussex Library] at 06:04 03 April 2016

UNDERSTANDING THE DRIVERS OF UNETHICAL PROGRAMMING BEHAVIOR 325

d. The End: Through the use of the snippets, Joe manages to deliver his module

with all required functionality on time. In the end, the firm’s product comes
to stores and is sold many times, so that Joe and his bosses are happy.

Scenario 2: Knowingly ignoring obligations from snippet reuse

a.
b.
c.

Setting: [SAME AS IN SCENARIO 1]

Problem: /[SAME AS IN SCENARIO 1]

Joe’s Approach: In order to avoid missing his deadline, he searches the Internet
for source code that implements the required functionality. He is happy to find
a project with such code, accesses its code base and—with minor modifications
—copies and pastes the lines of code from the Internet project that implement
the required functionality for his own project. Further, Joe checks for obliga-
tions that come with using code from the Internet project and learns that it
demands that he make the source code of his whole module also available on
the Internet. However, Joe knows that discussing this within his firm would
take very long, and there is a chance that his firm would disagree. Thus, to
avoid losing precious time over discussions, he does not account for the
obligation and makes some further changes to the code copied and pasted to
make sure that it is not a direct copy anymore. He removes some comments,
changes some variable names, and restructures the code sequence a little.
The End: Through the use of the snippets, Joe manages to deliver his module
with all required functionality on time. In the end, the firm’s product comes
to the stores and is sold many times, so that Joe and his bosses are happy.

Robustness check scenario: Not checking thoroughly for obligations
from component reuse

a.

Setting: [SAME AS IN SCENARIO 1]

b. Problem: [SAME AS IN SCENARIO 1]

Joe’s Approach: In order to avoid missing his deadline, he searches the
Internet for a component that provides the required functionality. He is
happy to find one, downloads it, and integrates it into his module. When
downloading and integrating the component, Joe does not check thoroughly
whether there are obligations that he has to fulfill when integrating this
component.

The End: Through the use of the component, Joe manages to deliver his module
with all required functionality on time. In the end, the firm’s product comes to the
stores and is sold many times, so that Joe and his bosses are happy.

	Abstract
	Theory and Hypotheses
	Internet-Accessible Code Reuse as an Ethical Issue of Employee’s Programming Activities
	Modeling Individual-Level Unethical Reuse Behavior
	Predicting Intention
	Predicting Subjective Norm: The Role of an Ethical Work Climate
	Predicting Attitude: Cost-Benefit Estimations and the Role of Punishment
	Usefulness of Internet-Accessible Code
	Mitigation of Time Pressure
	Avoidance of the Cost of Compliance with License Obligations
	Punishment Severity (Firm)
	Punishment Severity (Developer)
	Punishment Certainty

	Data and Methods
	Questionnaire Development and Considerations of Common Methods Bias
	Sample and Data Collection
	Descriptive Statistics

	Results
	Measurement Model Assessment
	Structural Model Assessment
	Robustness Checks

	Discussion and Implications
	Implications for Theory
	Limitations and Suggestions for Future Research
	Implications for Practice

	Conclusion
	This article has greatly benefited from the guidance of Professor Zwass, an associate editor, and three reviewers. Oliver Alexy is grateful for the support of both the UK Innovation Research Centre (RES/G028591/1; sponsored by the Economic and Social Research Council; the National Endowment for Science, Technology and the Arts; the UK Department for Business, Innovation and Skills; and the Technology Strategy Board) and the Engineering and Physical Sciences Research Council (GR/R95371/01). We appreciate valuable comments from Burcu Bulgurcu and Carol Saunders, and from seminar participants at Technische Universität München and the 2011 Academy of Management Conference. All errors are, of course, our own.
	Notes
	References
	Appendix B. Questionnaire Case Vignettes
	Scenario 1: Not checking thoroughly for obligations from snippet reuse
	Scenario 2: Knowingly ignoring obligations from snippet reuse
	Robustness check scenario: Not checking thoroughly for obligations from component reuse

